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Section 2: Proof by induction 
 
Solutions to Exercise level 2 
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   So the result is true for n = 1. 
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 

 

 

2. To prove that 
1

( 2)
2

2 2

n

r n
r

r n




  . 

 

Step 1: When n = 1,  L.H.S. 
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   So the result is true for n = 1. 
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 

 

3. To prove  
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Step 1: When n = 1,  L.H.S.   2 3 6  

     R.H.S.     13(3 1) 3 2 6  

   So the result is true for n = 1. 
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 

 

 

4. To prove that 
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Step 1: When n = 1,  L.H.S. 1 3 3    
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   So the result is true for n = 1. 
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 

 

  

5. To prove that  
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Step 1: When n = 1,  L.H.S. 
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   So the result is true for n = 1. 
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 
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6. To prove that 1
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Step 1: When n = 1,  L.H.S. 02 1   
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   So the result is true for n = 1. 
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 

 

 

7. To prove that for   1 3 2n nu u  and 1 1u , for  1n ,   12 3 1n
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   So the result is true for n = 1. 
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 

 

 

8. To prove that for 1 2 1n nu u    and 1 5u  , where n is a positive integer, 

3 2 1n
nu    . 

 

Step 1: When n = 1,  1

1 3 2 1 5u      



Edexcel AS FM Series 2 Exercise solutions 

 5 of 7 18/01/17   © MEI 
 integralmaths.org 

   So the result is true for n = 1. 

 

Step 2:  Assume 3 2 1k
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 
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   So the result is true for n = 1. 
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 
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Step 1:  For n = 1, 
   

    
   

1 0
2 6 2 6

M 5
1 3 1 3

 

   So the result is true for n = 1. 

 

Step 2:  Assume   
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Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 

 

 

11. To prove that 3 23 10n n n  is a multiple of 3. 

 

Step 1: When n = 1,  3 23 10 1 3 10 6n n n        which is a multiple   
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   So the result is true for n = 1. 
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   Since 23( 3 2)k k   is a multiple of 3, then if f(k) is a multiple of  

   3, then f(k+1) is a multiple of 3. 

 

Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 
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12. To prove that 23 1n   is a multiple of 8. 

 

Step 1: When n = 1,  2 23 1 3 1 8n      which is a multiple of 8. 

   So the result is true for n = 1. 

 

Step 2:  Assume 2f( ) 3 1kk    is a multiple of 8. 
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   So if f(k) is a multiple of 8, then f(k+1) is a multiple of 8. 

 

Step 3:  So if the result is true for n = k, then it is true for n = k + 1. 

   Since it is true for n = 1, then it is true for all positive integers  

   greater than or equal to 1 by induction. 

 

 

 

 

 


