Edexcel AS Further Maths Sequences and series "integral

Section 2: Proof by induction

Solutions to Exercise level 2

1. To prove that $\sum_{r=1}^{n} r^{2}(r+1)=\frac{n(n+1)(n+2)(3 n+1)}{12}$.

Step 1: When $n=1$, L.H.S. $=1^{2} \times 2=2$

$$
\text { R.H.S. }=\frac{1 \times 2 \times 3 \times 4}{12}=2
$$

so the result is true for $n=1$.

Step 2: Assume $\sum_{r=1}^{k} r^{2}(r+1)=\frac{k(k+1)(k+2)(3 k+1)}{12}$

$$
\begin{aligned}
\sum_{r=1}^{k+1} r^{2}(r+1) & =\frac{k(k+1)(k+2)(3 k+1)}{12}+(k+1)^{2}(k+2) \\
& =\frac{k(k+1)(k+2)(3 k+1)+12(k+1)^{2}(k+2)}{12} \\
& =\frac{(k+1)(k+2)\left(3 k^{2}+k+12 k+12\right)}{12} \\
& =\frac{(k+1)(k+2)\left(3 k^{2}+13 k+12\right)}{12} \\
& =\frac{(k+1)(k+2)(k+3)(3 k+4)}{12} \\
& =\frac{(k+1)((k+1)+1)((k+1)+2)(3(k+1)+1)}{12}
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
2. To prove that $\sum_{r=1}^{n} \frac{r}{2^{r}}=2-\frac{(n+2)}{2^{n}}$.

Step 1: \quad When $n=1$, L.H.S. $=\frac{1}{2}$

$$
\text { R.H.S. }=2-\frac{3}{2}=\frac{1}{2}
$$

so the result is true for $n=1$.

Step 2: Assume $\sum_{r=1}^{k} \frac{r}{2^{r}}=2-\frac{(k+2)}{2^{k}}$

Edexcel AS FM Series 2 Exercise solutions

$$
\begin{aligned}
\sum_{r=1}^{k+1} \frac{r}{2^{r}} & =2-\frac{(k+2)}{2^{k}}+\frac{k+1}{2^{k+1}} \\
& =2-\frac{2(k+2)-(k+1)}{2^{k+1}} \\
& =2-\frac{2 k+4-k-1}{2^{k+1}} \\
& =2-\frac{(k+1)+2}{2^{k+1}}
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
3. To prove $\sum_{r=1}^{n} 2 \times 3^{r}=3\left(3^{n}-1\right)$

Step 1: When $n=1$, L.H.S. $=2 \times 3=6$

$$
\text { R.H.S. }=3\left(3^{1}-1\right)=3 \times 2=6
$$

so the result is true for $n=1$.

Step 2: Assume $\sum_{r=1}^{k} 2 \times 3^{r}=3\left(3^{k}-1\right)$

$$
\begin{aligned}
& \sum_{r=1}^{n} 2 \times 3^{r}=3\left(3^{k}-1\right)+2 \times 3^{k+1} \\
& =3 \times 3^{k}-3+2 \times 3^{k+1} \\
& =3^{k+1}-3+2 \times 3^{k+1} \\
& =3 \times 3^{k+1}-3 \\
& =3\left(3^{k+1}-1\right)
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
4. To prove that $\sum_{r=1}^{n} r(r+2)=\frac{n(n+1)(2 n+7)}{6}$.

Step 1: When $n=1$, L.H.S. $=1 \times 3=3$

$$
\text { R.H.S. }=\frac{1 \times 2 \times 9}{6}=3
$$

so the result is true for $n=1$.

Step 2: Assume $\sum_{r=1}^{k} r(r+2)=\frac{k(k+1)(2 k+7)}{6}$

Edexcel AS FM Series 2 Exercise solutions

$$
\begin{aligned}
\sum_{r=1}^{k+1} r(r+2) & =\frac{k(k+1)(2 k+7)}{6}+(k+1)(k+3) \\
& =\frac{k(k+1)(2 k+7)+6(k+1)(k+3)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+7 k++6 k+18\right)}{6} \\
& =\frac{(k+1)\left(2 k^{2}+13 k+18\right)}{6} \\
& =\frac{(k+1)(k+2)(2 k+9)}{6} \\
& =\frac{(k+1)((k+1)+1)(2(k+1)+7)}{6}
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
5. To prove that $\sum_{r=1}^{n} \frac{1}{(2 r-1)(2 r+1)}=\frac{n}{(2 n+1)}$.

Step 1: When $n=1$, L.H.S. $=\frac{1}{1 \times 3}=\frac{1}{3}$

$$
\text { R.H.S. }=\frac{1}{3}
$$

So the result is true for $n=1$.
Step 2: Assume $\sum_{r=1}^{k} \frac{1}{(2 r-1)(2 r+1)}=\frac{k}{(2 k+1)}$

$$
\begin{aligned}
\sum_{r=1}^{k+1} \frac{1}{(2 r-1)(2 r+1)} & =\frac{k}{(2 k+1)}+\frac{1}{(2 k+1)(2 k+3)} \\
& =\frac{k(2 k+3)+1}{(2 k+1)(2 k+3)} \\
& =\frac{2 k^{2}+3 k+1}{(2 k+1)(2 k+3)} \\
& =\frac{(2 k+1)(k+1)}{(2 k+1)(2 k+3)} \\
& =\frac{k+1}{2(k+1)+1}
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.

Edexcel AS FM Series 2 Exercise solutions

6. To prove that $\sum_{r=1}^{n} 2^{r-1}=2^{n}-1$.

Step 1: When $n=1$, L.H.S. $=2^{\circ}=1$

$$
\text { R.H.S. }=2^{1}-1=1
$$

so the result is true for $n=1$.

Step 3: Assume $\sum_{r=1}^{k} 2^{r-1}=2^{k}-1$

$$
\begin{aligned}
\sum_{r=1}^{k+1} 2^{r-1} & =2^{k}-1+2^{(k+1)-1} \\
& =2^{k}-1+2^{k} \\
& =2 \times 2^{k}-1 \\
& =2^{k+1}-1
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
7. To prove that for $u_{n+1}=3 u_{n}+2$ and $u_{1}=1$, for $n \geq 1, u_{n}=2\left(3^{n-1}\right)-1$

Step 1: When $n=1, u_{1}=2\left(3^{0}\right)-1=2 \times 1-1=1$
so the result is true for $n=1$.

Step 2: Assume $u_{k}=2\left(3^{k-1}\right)-1$

$$
\begin{aligned}
& u_{k+1}=3 u_{k}+2 \\
& =3\left(2\left(3^{k-1}\right)-1\right)+2 \\
& =3 \times 2 \times 3^{k-1}-3+2 \\
& =2 \times 3^{k}-1 \\
& =2\left(3^{(k+1)-1}\right)-1
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
8. To prove that for $u_{n+1}=2 u_{n}+1$ and $u_{1}=5$, where n is a positive integer, $u_{n}=3 \times 2^{n}-1$.

Step 1: When $n=1, u_{1}=3 \times 2^{1}-1=5$

Edexcel AS FM Series 2 Exercise solutions

So the result is true for $n=1$.

Step 2: Assume $u_{k}=3 \times 2^{k}-1$

$$
\begin{aligned}
u_{k+1} & =2 u_{k}+1 \\
& =2\left(3 \times 2^{k}-1\right)+1 \\
& =3 \times 2^{k+1}-2+1 \\
& =3 \times 2^{k+1}-1
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
9. To prove that if $A=\left(\begin{array}{ll}3 & -1 \\ 4 & -1\end{array}\right), A^{n}=\left(\begin{array}{cc}2 n+1 & -n \\ 4 n & 1-2 n\end{array}\right)$ where n is a positive integer.

Step 1: When $n=1, \quad A^{1}=\left(\begin{array}{cc}2 \times 1+1 & -1 \\ 4 \times 1 & 1-2 \times 1\end{array}\right)=\left(\begin{array}{cc}3 & -1 \\ 4 & -1\end{array}\right)=A$
so the result is true for $n=1$.

Step 2: \quad Assume $A^{k}=\left(\begin{array}{cc}2 k+1 & -k \\ 4 k & 1-2 k\end{array}\right)$

$$
\begin{aligned}
A^{k+1} & =\left(\begin{array}{cc}
2 k+1 & -k \\
4 k & 1-2 k
\end{array}\right)\left(\begin{array}{cc}
3 & -1 \\
4 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
3(2 k+1)-4 k & -(2 k+1)+k \\
12 k+4(1-2 k) & -4 k-(1-2 k)
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 k+3 & -k-1 \\
4 k+4 & -2 k-1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2(k+1)+1 & -(k+1) \\
4(k+1) & 1-2(k+1)
\end{array}\right)
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
10. To prove that if $M=\left(\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right), M^{n}=5^{n-1}\left(\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right)$ where $n \geq 1$

Edexcel AS FM Series 2 Exercise solutions

Step 1: For $n=1, M^{1}=5^{\circ}\left(\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right)=\left(\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right)$
so the result is true for $n=1$.

Step 2: \quad Assume $M^{k}=5^{k-1}\left(\begin{array}{ll}2 & 6 \\ 1 & 3\end{array}\right)$

$$
\begin{aligned}
M^{k+1} & =5^{k-1}\left(\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right)\left(\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right) \\
& =5^{k-1}\left(\begin{array}{cc}
10 & 30 \\
5 & 15
\end{array}\right) \\
& =5^{k-1} \times 5^{2}\left(\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right) \\
& =5^{k}\left(\begin{array}{ll}
2 & 6 \\
1 & 3
\end{array}\right)
\end{aligned}
$$

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
11. To prove that $n^{3}+3 n^{2}-10 n$ is a multiple of 3 .

Step 1: When $n=1, n^{3}+3 n^{2}-10 n=1+3-10=-6$ which is a multiple of 3 .
so the result is true for $n=1$.

Step 2: Assume $f(k)=k^{3}+3 k^{2}-10 k$ is a multiple of 3 .

$$
\begin{aligned}
f(k+1) & =(k+1)^{3}+3(k+1)^{2}-10(k+1) \\
& =k^{3}+3 k^{2}+3 k+1+3 k^{2}+6 k+3-10 k-10 \\
& =k^{3}+6 k^{2}-k-6 \\
& =\left(f(k)-3 k^{2}+10 k\right)+6 k^{2}-k-6 \\
& =f(k)+3 k^{2}+9 k-6 \\
& =f(k)+3\left(k^{2}+3 k-2\right)
\end{aligned}
$$

Since $3\left(k^{2}+3 k-2\right)$ is a multiple of 3 , then if $f(k)$ is a multiple of 3 , then $f(k+1)$ is a multiple of 3 .

Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.

Edexcel AS FM Series 2 Exercise solutions

12. To prove that $3^{2 n}-1$ is a multiple of 8 .

Step 1: When $n=1,3^{2 n}-1=3^{2}-1=8$ which is a multiple of 8. so the result is true for $n=1$.

Step 2: Assume $f(k)=3^{2 k}-1$ is a multiple of 8 .

$$
\begin{aligned}
f(k+1) & =3^{2(k+1)}-1 \\
& =3^{2 k} 3^{2}-1 \\
& =g \times 3^{2 k}-1 \\
& =g(f(k)+1)-1 \\
& =g f(k)+8
\end{aligned}
$$

So if $f(k)$ is a multiple of 8 , then $f(k+1)$ is a multiple of 8 .
Step 3: So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.

