Edexcel AS Further Maths Sequences and series "integral

Section 2: Proof by induction

Solutions to Exercise level 1

1. (i) $u_{1}=3-2^{1-1}=3-1=2$
so the result is true for $n=1$.
(ii) $u_{k+1}=2 u_{k}-3$

$$
=2\left(3-2^{k-1}\right)-3
$$

(iii) $u_{k+1}=2 \times 3-2 \times 2^{k-1}-3$

$$
\begin{aligned}
& =6-2^{k}-3 \\
& =3-2^{k}
\end{aligned}
$$

(iv) So if the result is true for $n=k$, then it is true for $n=k+1$.
since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
2. (i) When $n=1, A^{1}=\left(\begin{array}{cc}2^{1} & 0 \\ 2^{2}-2 & 1\end{array}\right)=\left(\begin{array}{cc}2 & 0 \\ 4-2 & 1\end{array}\right)=\left(\begin{array}{ll}2 & 0 \\ 2 & 1\end{array}\right)$. so the result is true for $n=1$.
(ii) Assume that $A^{k}=\left(\begin{array}{cc}2^{k} & 0 \\ 2^{k+1}-2 & 1\end{array}\right)$

$$
\begin{aligned}
A^{k} A & =\left(\begin{array}{cc}
2^{k} & 0 \\
2^{k+1}-2 & 1
\end{array}\right)\left(\begin{array}{ll}
2 & 0 \\
2 & 1
\end{array}\right) \\
& =\left(\begin{array}{cc}
2 \times 2^{k} & 0 \\
2 \times 2^{k+1}-2 \times 2+2 & 1
\end{array}\right)
\end{aligned}
$$

(ilí) $A^{k+1}=\left(\begin{array}{cc}2 \times 2^{k} & 0 \\ 2 \times 2^{k+1}-2 \times 2+2 & 1\end{array}\right)$

$$
=\left(\begin{array}{cc}
2^{k+1} & 0 \\
2^{k+2}-4+2 & 1
\end{array}\right)
$$

$$
=\left(\begin{array}{cc}
2^{k+1} & 0 \\
2^{k+2}-2 & 1
\end{array}\right)
$$

(iv) So if the result is true for $n=k$, then it is true for $n=k+1$.
since it is true for $n=1$, then it is true for all positive integers greater

Edexcel AS FM Series 2 Exercise solutions

than or equal to 1 by induction.
3. (i) When $n=1$, L.H.S. $=1$

$$
\text { R.H.S }=\frac{1}{2} \times 1(3-1)=\frac{1}{2} \times 1 \times 2=1
$$

So the result is true for $n=1$.
(ii) The $(k+1)$ th term $=3(k+1)-2$
(iii) Assume sum of k terms $=\frac{1}{2} k(3 k-1)$
sum of $(k+1)$ terms $=\frac{1}{2} k(3 k-1)+3(k+1)-2$
(iv) $\frac{1}{2} k(3 k-1)+3(k+1)-2=\frac{3}{2} k^{2}-\frac{1}{2} k+3 k+3-2$

$$
\begin{aligned}
& =\frac{3}{2} k^{2}+\frac{5}{2} k+1 \\
& =\frac{1}{2}\left(3 k^{2}+5 k+2\right) \\
& =\frac{1}{2}(k+1)(3 k+2) \\
& =\frac{1}{2}(k+1)(3(k+1)-1)
\end{aligned}
$$

(v) So if the result is true for $n=k$, then it is true for $n=k+1$. since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.
4. (i) When $n=1$, L.H.S. $=2-3=-1$

$$
\text { R.H.S }=1(1-2)=1 \times-1=-1
$$

so the result is true for $n=1$.
(ii) $(k+1)$ th term $=2(k+1)-3$
(iii) Assume $\sum_{r=1}^{k}(2 r-3)=k(k-2)$

$$
\sum_{r=1}^{k+1}(2 r-3)=k(k-2)+2(k+1)-3
$$

(iv) $k(k-2)+2(k+1)-3=k^{2}-2 k+2 k+2-3$

$$
\begin{aligned}
& =k^{2}-1 \\
& =(k+1)(k-1)=(k+1)((k+1)-2)
\end{aligned}
$$

(v) So if the result is true for $n=k$, then it is true for $n=k+1$.
Since it is true for $n=1$, then it is true for all positive integers greater than or equal to 1 by induction.

