Section 3: Matrices and simultaneous equations

Solutions to Exercise level 2

1. (i) $\left(\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right)\binom{x}{y}=\binom{5}{5}$
$\operatorname{det}\left(\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right)=5$
Inverse of $\left(\begin{array}{cc}1 & -1 \\ 3 & 2\end{array}\right)$ is $\frac{1}{5}\left(\begin{array}{cc}2 & 1 \\ -3 & 1\end{array}\right)$
$\binom{x}{y}=\frac{1}{5}\left(\begin{array}{cc}2 & 1 \\ -3 & 1\end{array}\right)\binom{5}{5}=\frac{1}{5}\binom{15}{-10}=\binom{3}{-2}$
There is a unique solution: $x=3, y=-2$.
(ii) $\left(\begin{array}{ll}4 & 6 \\ 2 & 3\end{array}\right)\binom{x}{y}=\binom{8}{4}$
$\operatorname{det}\left(\begin{array}{ll}4 & 6 \\ 2 & 3\end{array}\right)=0$ so there is not a unique solution.
The equations are multiples of each other so they are consistent, and there are infinitely many solutions.
2. $\left(\begin{array}{ccc}1 & 3 & 1 \\ 2 & -1 & -4 \\ 4 & 5 & -3\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}4 \\ 3 \\ 9\end{array}\right)$

Inverse matrix $=\frac{1}{7}\left(\begin{array}{ccc}23 & 14 & -11 \\ -10 & -7 & 6 \\ 14 & 7 & -7\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\frac{1}{7}\left(\begin{array}{ccc}23 & 14 & -11 \\ -10 & -7 & 6 \\ 14 & 7 & -7\end{array}\right)\left(\begin{array}{l}4 \\ 3 \\ 9\end{array}\right)$

$$
=\frac{1}{7}\left(\begin{array}{c}
35 \\
-7 \\
14
\end{array}\right)=\left(\begin{array}{c}
5 \\
-1 \\
2
\end{array}\right)
$$

The solution of the equations is $x=5, y=-1$ and $z=2$.
3. (i) $\operatorname{det} A=k(k-12)-4(0-8)$

$$
=k^{2}-12 k+32
$$

When $k=2$, $\operatorname{det} A=4-24+32=12$
$\operatorname{det} A \neq 0$, so A is non-singular when $k=2$.

Edexcel AS FM Inverse matrices 3 Exercise solutions

(ii) When $k=4, \operatorname{det} A=16-48+32=0$
so the equations do not have a unique solution.

$$
\begin{array}{r}
4 x+4 y=6 \\
4 y+4 z=8 \tag{2}
\end{array}
$$

$2 x+3 y+z=1$
(1) $-2(3) \Rightarrow-2 y-2 z=4 \Rightarrow y+z=-2$
(2) $\Rightarrow y+z=2$

The equations are inconsistent, so there are no solutions.
4. (i) $A B=\left(\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & a\end{array}\right)\left(\begin{array}{ccc}3 a-1 & a+1 & -4 \\ 1 & 2 a-1 & -2 \\ -3 & -3 & 6\end{array}\right)$

$$
\begin{aligned}
& =\left(\begin{array}{ccc}
6 a-2-1-3 & 2 a+2-2 a+1-3 & -8+2+6 \\
0+3-3 & 0+6 a-3-3 & 0-6+6 \\
3 a-1+1-3 a & a+1+2 a-1-3 a & -4-2+6 a
\end{array}\right) \\
& =\left(\begin{array}{ccc}
6 a-6 & 0 & 0 \\
0 & 6 a-6 & 0 \\
0 & 0 & 6 a-6
\end{array}\right)
\end{aligned}
$$

$A B=(6 a-6) \left\lvert\, \Rightarrow A^{-1}=\frac{1}{6 a-6} B\right.$
so $A^{-1}=\frac{1}{6 a-6}\left(\begin{array}{ccc}3 a-1 & a+1 & -4 \\ 1 & 2 a-1 & -2 \\ -3 & -3 & 6\end{array}\right)$, provided that $a \neq 1$.
(ii) $\left(\begin{array}{ccc}2 & -1 & 1 \\ 0 & 3 & 1 \\ 1 & 1 & a\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)$

Therefore, provided $a \neq 1$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=A^{-1}\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\frac{1}{6 a-6}\left(\begin{array}{ccc}3 a-1 & a+1 & -4 \\ 1 & 2 a-1 & -2 \\ -3 & -3 & 6\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 2\end{array}\right)=\frac{1}{6 a-6}\left(\begin{array}{c}4 a-8 \\ 2 a-4 \\ 6\end{array}\right)$
so the solution is $x=\frac{2 a-4}{3 a-3}, y=\frac{a-2}{3 a-3}, z=\frac{1}{a-1}$ provided $a \neq 1$.
If $a=1$ then by adding the first two equations together and comparing to the third equation, it can be seen that there are no solutions.

Edexcel AS FM Inverse matrices 3 Exercise solutions

5. $\left(\begin{array}{ccc}2 & 1 & 3 \\ 1 & -2 & k+1 \\ k & 4 & 2\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}5 \\ 2 \\ 8\end{array}\right)$
(i) For $k=-2$, the determinant is zero so there is not a unique solution.

$$
\begin{align*}
& 2 x+y+3 z=5 \tag{1}\\
& x-2 y-z=2 \tag{2}\\
& -2 x+4 y+2 z=8 \tag{3}
\end{align*}
$$

Equation (3) can be written as $x-2 y-z=-4$.
This is not consistent with equation (2), so there are no solutions.
This situation represents two parallel planes (equations 2 and 3), and a third plane (equation 1) which cuts across both.
(ii) For $k=2$, there is a unique solution.

$$
\begin{aligned}
& \left(\begin{array}{ccc}
2 & 1 & 3 \\
1 & -2 & 3 \\
2 & 4 & 2
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{l}
5 \\
2 \\
8
\end{array}\right) \\
& \text { Inverse matrix }=-\frac{1}{4}\left(\begin{array}{ccc}
-16 & 10 & 9 \\
4 & -2 & -3 \\
8 & -6 & -5
\end{array}\right) \\
& \left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=-\frac{1}{4}\left(\begin{array}{ccc}
-16 & 10 & 9 \\
4 & -2 & -3 \\
8 & -6 & -5
\end{array}\right)\left(\begin{array}{l}
5 \\
2 \\
8
\end{array}\right) \\
& =-\frac{1}{4}\left(\begin{array}{c}
12 \\
-8 \\
-12
\end{array}\right)=\left(\begin{array}{c}
-3 \\
2 \\
3
\end{array}\right)
\end{aligned}
$$

The unique solution is $x=-3, y=2, z=3$.
This situation represents three planes which meet at a point.
(iii) For $k=3$, the determinant is zero so there is not a unique solution.

$$
\begin{align*}
& 2 x+y+3 z=5 \tag{1}\\
& x-2 y+4 z=2 \tag{2}\\
& 3 x+4 y+2 z=8 \tag{3}
\end{align*}
$$

(1) $-2 \times(2)$:
$5 y-5 z=1$
$3 \times(2)-(3)$
$-10 y+10 z=-2$
These equations are consistent.
This situation represents three planes which form a sheaf of planes, with a common line.

Edexcel AS FM Inverse matrices 3 Exercise solutions

6. (i) $\operatorname{det} A=2(k-2)-1(0+3)$

$$
\begin{aligned}
& =2 k-4-3 \\
& =2 k-7
\end{aligned}
$$

The matrix is singular for $k=3.5$.
(ii) $A=\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & 1 & 1 \\ -3 & 2 & 3\end{array}\right)$

From (i), for $k=3$, $\operatorname{det} A=-1$
Matrix of cofactors $=\left(\begin{array}{ccc}1 & -3 & 3 \\ -2 & 3 & -4 \\ 1 & -2 & 2\end{array}\right)$
Inverse matrix $=-1\left(\begin{array}{ccc}1 & -2 & 1 \\ -3 & 3 & -2 \\ 3 & -4 & 2\end{array}\right)=\left(\begin{array}{ccc}-1 & 2 & -1 \\ 3 & -3 & 2 \\ -3 & 4 & -2\end{array}\right)$
(iii) $\left(\begin{array}{ccc}2 & 0 & -1 \\ 0 & 1 & 1 \\ -3 & 2 & 3.5\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}4 \\ 3 \\ m\end{array}\right)$
(1) $2 x-z=4$
(2) $y+z=3$
(3) $-3 x+2 y+3.5 z=m$
(1) $\Rightarrow z=2 x-4$
(2) $\Rightarrow y=3-z=3-2 x+4=7-2 x$
substítuting into (3) gives $-3 x+14-4 x+7 x-14=m$

$$
0=m
$$

The solution is $x=t, y=7-2 t, z=2 t-4$. This is the equation of a straight line which is the intersection line of three planes.
7. $\left|\begin{array}{ccc}3 & -1 & 1 \\ 2 & 1 & -6 \\ 5 & -3 & k\end{array}\right|=3(k-18)-1(-30-2 k)+1(-6-5)$

$$
=5 k-35
$$

(A) For a unique solution, the determinant must be non-zero, so k can take any value other than 7 , and r can take any value.
The geometric interpretation is three planes meeting at a point.
(B) For an infinite number of solutions, the determinant is zero so $k=7$, and the equations must be consistent.

Edexcel AS FM Inverse matrices 3 Exercise solutions

(1) $3 x-y+z=5$
(2) $2 x+y-6 z=5$
(3) $5 x-3 y+7 z=r$
$(1)+(2) \Rightarrow 5 x-5 z=10 \Rightarrow x-z=2$
$3(2)+(3) \Rightarrow 11 x-11 z=15+r$
For the equations to be consistent, $15+r=22 \Rightarrow r=7$
Sole $=7$ and $r=7$.
The geometric interpretation is three planes forming a sheaf with a common line.
(c) For no solutions, the determinant is zero and the equations are inconsistent, so $k=7$ and r can take any value other than 7 . The geometric interpretation is three planes forming a triangular prism.
8. (i) $\left(\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 7 & 0\end{array}\right)\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)$
$\left|\begin{array}{lll}1 & 0 & 1 \\ 0 & 2 & 3 \\ 1 & 7 & 0\end{array}\right|=1(0-21)+1(0-2)=-23$
Matrix of cofactors $=\left(\begin{array}{ccc}-21 & 3 & -2 \\ 7 & -1 & -7 \\ -2 & -3 & 2\end{array}\right)$
Inverse matrix $=-\frac{1}{23}\left(\begin{array}{ccc}-21 & 7 & -2 \\ 3 & -1 & -3 \\ -2 & -7 & 2\end{array}\right)$
$\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=-\frac{1}{23}\left(\begin{array}{ccc}-21 & 7 & -2 \\ 3 & -1 & -3 \\ -2 & -7 & 2\end{array}\right)\left(\begin{array}{l}1 \\ 1 \\ 1\end{array}\right)=-\frac{1}{23}\left(\begin{array}{c}-16 \\ -1 \\ -7\end{array}\right)$
$x=\frac{16}{23}, y=\frac{1}{23}, z=\frac{7}{23}$
(ii) (1) $x+z=1$
(2) $2 y+3 z=1$
(3) $x+7 y=1$
(3)-(1) gives $7 y-z=0 \Rightarrow z=7 y$
substituting into (2) gives
$2 y+21 y=1$
$y=\frac{1}{23}, z=\frac{7}{23}, x=\frac{16}{23}$

