Edexcel AS Further Mathematics Matrices

Section 3: Invariance

Solutions to Exercise level 2

1. At invariant points: $\left(\begin{array}{cc}4 & 3 \\ -3 & -2\end{array}\right)\binom{x}{y}=\binom{x}{y}$

$$
\begin{aligned}
& \binom{4 x+3 y}{-3 x-2 y}=\binom{x}{y} \\
& \binom{3 x+3 y}{-3 x-3 y}=\binom{0}{0}
\end{aligned}
$$

The invariant points satisfy the equation $x+y=0$
so $y=-x$ is a line of invariant points.

For points on invariant lines $y=m x+c$,
image points are given by $\left(\begin{array}{cc}4 & 3 \\ -3 & -2\end{array}\right)\binom{x}{m x+c}=\binom{4 x+3 m x+3 c}{-3 x-2 m x-20}$
The image point must lie on the line $y=m x+c$,

$$
\begin{aligned}
\text { so } & -3 x-2 m x-20=m(4 x+3 m x+3 c)+c \\
& \left(3 m^{2}+6 m+3\right) x+3 m c+30=0 \\
& 3\left(m^{2}+2 m+1\right) x+3 c(m+1)=0 \\
& (m+1)^{2} x+c=0
\end{aligned}
$$

This must be true for all values of x, so $m=-1$ and c can take any value So the invariant lines are $y=-x+0$
(note that the case $c=0$) is the line of invariant points already found)
2. (i) $M^{2}=\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2}\end{array}\right)\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2}\end{array}\right)=\left(\begin{array}{cc}\frac{3}{4}+\frac{1}{4} & \frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4} & \frac{1}{4}+\frac{3}{4}\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$
(ii) For invariant points, $\left(\begin{array}{cc}\frac{\sqrt{3}}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{\sqrt{3}}{2}\end{array}\right)\binom{x}{y}=\binom{x}{y}$

$$
\Rightarrow\binom{\frac{\sqrt{3}}{2} x+\frac{1}{2} y}{\frac{1}{2} x-\frac{\sqrt{3}}{2} y}=\binom{x}{y}
$$

Edexcel AS FM Matrices 3 Exercise solutions

$\frac{\sqrt{3}}{2} x+\frac{1}{2} y=x \Rightarrow x \sqrt{3}+y=2 x \quad \Rightarrow y=x(2-\sqrt{3})$
$\frac{1}{2} x-\frac{\sqrt{3}}{2} y=y \Rightarrow x-\sqrt{3} y=2 y \Rightarrow y(2+\sqrt{3})=x$

$$
\begin{aligned}
& \Rightarrow y=\frac{x}{(2+\sqrt{3})} \\
& \Rightarrow y=x(2-\sqrt{3})
\end{aligned}
$$

So the equation of the line of invariant points is $y=x(2-\sqrt{3})$.
(iii) The transformation is a reflection in the line $y=x(2-\sqrt{3})$.

The result from part (i) shows that M is its own inverse, which is true of a reflection - performing a reflection twice returns to the original object.
(iv) The other invariant lines for a reflection are perpendicular to the mirror line, so they are of the form $y=-\frac{x}{2-\sqrt{3}}+c$, or $y=-(2+\sqrt{3}) x+c$
3. (i) At invariant points, $\left(\begin{array}{ll}-1 & 1 \\ -4 & 3\end{array}\right)\binom{x}{y}=\binom{x}{y}$

$$
\begin{aligned}
& \binom{-x+y}{-4 x+3 y}=\binom{x}{y} \\
& \binom{-2 x+y}{-4 x+2 y}=0
\end{aligned}
$$

The invariant points satisfy the equation $-2 x+y=0$ so the line of invariant points is $y=2 x$.
(ii) For points on invariant lines $y=m x+c$, image points are given by $\left(\begin{array}{cc}-1 & 1 \\ -4 & 3\end{array}\right)\binom{x}{m x+c}=\binom{-x+m x+c}{-4 x+3 m x+30}$
The image point must lie on the line $y=m x+c$,
so $-4 x+3 m x+30=m(-x+m x+c)+c$
$-4 x+3 m x+3 c=-m x+m^{2} x+m c+c$
$\left(m^{2}-4 m+4\right) x+m c-2 x=0$
$(m-2)^{2} x+c(m-2)=0$
This must be true for all values of x, so $m=2$, and c can take any value. so the invariant lines have the form $y=2 x+0$.

The invariant lines are parallel to the line of invariant points (the shear line). This is what you would expect since in a shear points are translated parallel to the shear line.

