Edexcel AS Further Mathematics Inverse matrices "integral

Section 3: Matrices and simultaneous equations

Solutions to Exercise level 3

1. (i) $\left(\begin{array}{ll}a & b \\ b & a\end{array}\right)\binom{x}{y}=\binom{1}{b}$

For the equations to have a unique solution

$$
\begin{aligned}
& \operatorname{det}\left(\begin{array}{ll}
a & b \\
b & a
\end{array}\right) \neq 0 \\
& a^{2}-b^{2} \neq 0 \\
& (a+b)(a-b) \neq 0 \\
& a \neq \pm b
\end{aligned}
$$

(ii) $\operatorname{det}\left(\begin{array}{ll}2 & b \\ b & 2\end{array}\right)=4-b^{2}$

$$
\begin{aligned}
& \left(\begin{array}{ll}
2 & b \\
b & 2
\end{array}\right)^{-1}=\frac{1}{4-b^{2}}\left(\begin{array}{cc}
2 & -b \\
-b & 2
\end{array}\right) \\
& \left(\begin{array}{ll}
2 & b \\
b & 2
\end{array}\right)\binom{x}{y}=\binom{1}{b} \\
& \binom{x}{y}=\frac{1}{4-b^{2}}\left(\begin{array}{cc}
2 & -b \\
-b & 2
\end{array}\right)\binom{1}{b}=\frac{1}{4-b^{2}}\binom{2-b^{2}}{b} \\
& \text { so } x=\frac{2-b^{2}}{4-b^{2}}, y=\frac{b}{4-b^{2}}
\end{aligned}
$$

(ii) If the solution lies on the line $y=x$,

$$
\begin{aligned}
& \frac{2-b^{2}}{4-b^{2}}=\frac{b}{4-b^{2}} \\
& \Rightarrow 2-b^{2}=b \\
& \Rightarrow b^{2}+b-2=0 \\
& \Rightarrow(b+2)(b-1)=0 \\
& \Rightarrow b=-2 \text { or } b=1
\end{aligned}
$$

But since $a=2, b \neq \pm 2$
therefore $b=1$.
2.
(i) $\Pi^{-1}=\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right) \times \frac{1}{2}\left(\begin{array}{ccc}\lambda & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & \lambda\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}\lambda+1 & 0 & 0 \\ \lambda-1 & 2 & \lambda-1 \\ 0 & 0 & 1+\lambda\end{array}\right)$

For $\lambda=1$, this gives the identity matrix, so $\lambda=1$.
(ii) $\left(\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right)\left(\begin{array}{l}z \\ y \\ x\end{array}\right)=\left(\begin{array}{l}a \\ b \\ 0\end{array}\right)$
using the result from (i), the inverse of T is $\frac{1}{2}\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1\end{array}\right)$
so $\left(\begin{array}{l}z \\ y \\ x\end{array}\right)=\frac{1}{2}\left(\begin{array}{ccc}1 & 1 & -1 \\ 1 & -1 & 1 \\ -1 & 1 & 1\end{array}\right)\left(\begin{array}{l}a \\ b \\ c\end{array}\right)=\frac{1}{2}\left(\begin{array}{c}a+b-c \\ a-b+c \\ -a+b+c\end{array}\right)$
so $Z=\frac{1}{2}(a+b-c)$
$Y=\frac{1}{2}(a-b+c)$
$x=\frac{1}{2}(-a+b+c)$
(iii) $x y=z, x z=y, y z=x$

$$
\begin{aligned}
& \text { so } \frac{Y z}{x}=\frac{x y x z}{y z}=x^{2} \\
& \Rightarrow x^{2}=\frac{\frac{1}{2}(a-b+c) \frac{1}{2}(-a+b+c)}{\frac{1}{2}(a+b-c)}=\frac{(a-b+c)(a+b-c)}{2(-a+b+c)} \\
& \Rightarrow x= \pm \sqrt{\frac{(a-b+c)(a+b-c)}{2(-a+b+c)}} \\
& \text { similarly } y= \pm \sqrt{\frac{(a+b-c)(-a+b+c)}{2(a-b+c)}} \\
& \text { and } z= \pm \sqrt{\frac{(a-b+c)(-a+b+c)}{2(a+b-c)}}
\end{aligned}
$$

3. (i) $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{x}{y}=\binom{3}{4}$
$\operatorname{det}\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)=\cos ^{2} \theta+\sin ^{2} \theta=1$
so the determinant is not zero for any value of θ, and so the simultaneous equations have a unique solution for all values of θ.
(ii) $\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)^{-1}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
so $\binom{x}{y}=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)\binom{3}{4}=\binom{3 \cos \theta+4 \sin \theta}{-3 \sin \theta+4 \cos \theta}$

Edexcel AS FM Inverse matrices 3 Exercise solutions

For $\theta=30^{\circ},\binom{x}{y}=\binom{3 \cos 30^{\circ}+4 \sin 30^{\circ}}{-3 \sin 30^{\circ}+4 \cos 30^{\circ}}=\binom{\frac{3}{2} \sqrt{3}+2}{-\frac{3}{2}+2 \sqrt{3}}$
so the solution is $x=\frac{3}{2} \sqrt{3}+2, y=-\frac{3}{2}+2 \sqrt{3}$
(iii) If a vector $\binom{x}{y}$ satisfies the simultaneous equations, then $\binom{x}{y}$ is mapped onto $\binom{3}{4}$ by an anticlockwise rotation through θ about the origin. Since a rotation about the origin does not affect the modulus of the vector, all such vectors will have modulus 5 (as $\sqrt{3^{2}+4^{2}}=5$). This describes a circle with radius 5 and centre at the origin, so the locus of points is given by

$$
x^{2}+y^{2}=5
$$

Alternatively:
$x=3 \cos \theta+4 \sin \theta, y=-3 \sin \theta+4 \cos \theta$
squaring: $x^{2}=9 \cos ^{2} \theta+24 \cos \theta \sin \theta+16 \sin ^{2} \theta$

$$
y^{2}=9 \sin ^{2} \theta-24 \cos \theta \sin \theta+16 \cos ^{2} \theta
$$

Adding: $x^{2}+y^{2}=9\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+16\left(\sin ^{2} \theta+\cos ^{2} \theta\right)$
$\Rightarrow x^{2}+y^{2}=9+16$
$\Rightarrow x^{2}+y^{2}=25$
4. (i) $\left|\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & a \\ 1 & 0 & b\end{array}\right|=1(b-0)+1(a-0)=a+b$

Matrix of cofactors $=\left(\begin{array}{ccc}b & a & -1 \\ -b & b & 1 \\ a & -a & 1\end{array}\right)$
$A^{1}=\frac{1}{a+b}\left(\begin{array}{ccc}b & -b & a \\ a & b & -a \\ -1 & 1 & 1\end{array}\right)$
(ii) There is a unique solution provided that $a+b \neq 0$.
(iii) If there are solutions but not a unique solution, then $a+b=0$, and the equations must be consistent.
The equations are:

Edexcel AS FM Inverse matrices 3 Exercise solutions

(1) $x+y=0$
(2) $y+a z=1$
(3) $x+b z=1$
(2) + (3) gives $x+y+(a+b) z=2$

Since $a+b=0$, this gives $x+y=2$
so for consistency with (1), $c=2$.
so $a+b=0$ and $c=2$.
5. (i) If the planes meet at a point, the determinant of the matrix is non-zero.

$$
\begin{aligned}
\left|\begin{array}{llc}
2 & a & b \\
4 & c & d \\
8 & 4 & 12
\end{array}\right| & =2(12 c-4 d)+a(8 d-48)+b(16-8 c) \\
& =24 c-8 d+8 a d-48 a+16 b-8 b c \\
& =8(-6 a+2 b+3 c-d+a d-b c)
\end{aligned}
$$

So any values for which the determinant is not zero can be used, e.g. $a=1$ and $b=c=d=0$, and p, q can take any values.
(ii) In this case, the determinant is zero, none of the planes are parallel so no row is a multiple of any other, and there is no solution to the equations. choosing values that make the determinant zero but do not make any row a multiple of any other:
e.g. $a=b=d=1, c=2$

This gives equations (1) $2 x+y+z=p$
(2) $4 x+2 y+z=q$
(3) $8 x+4 y+12 z=20$
$2(1)-(2)$ gives $z=2 p-q$
(3) $-2(2)$ gives $10 z=20-2 q \Rightarrow 5 z=10-q$

If these are to be consistent, $5(2 p-q)=10-q$

$$
\begin{aligned}
& 10 p-5 q-=10-q \\
& 10 p-6 q=10
\end{aligned}
$$

So for the equations to be inconsistent, choose any values of p and a for which this is not true, e.g. $p=0, q=1$.
(iii) If two of the planes are parallel, then for example $c=2, d=6$ means the second and third equations are parallel. The values of a and b can be any for which the first line is not parallel, e.g. $a=b=0$. In this case the value of a can be anything other than 10 (so that the second equation is not the same as the first) and p can take any value.
(iv) If all planes are parallel, then each row must be a multiple of the others.

So $a=1, b=3, c=2, d=6$.
If all three planes are distinct, then p and q must be such that the three

Edexcel AS FM Inverse matrices 3 Exercise solutions

equations are all different. e.g.p $=q=20$
(v) This is similar to (ii) but the equations must be consistent.
so use the same values for a, b, c and d
e.g. $a=b=d=1, c=2$
but this time choose values for p and q that satisfy $10 p-6 q=10$
e.g. $p=1, q=0$.

