Section 1: Introduction to matrices

## Solutions to Exercise level 3

1. $\left(\begin{array}{cc}a & 4 \\ 5 & 1\end{array}\right)+c\left(\begin{array}{cc}1 & b \\ -2 & 0\end{array}\right)=\left(\begin{array}{cc}5 & 1 \\ -1 & 1\end{array}\right)$.
$\left(\begin{array}{cc}a+c & 4+b c \\ 5-2 c & 1\end{array}\right)=\left(\begin{array}{cc}5 & 1 \\ -1 & 1\end{array}\right)$
Equating elements: $\quad 5-2 c=-1 \Rightarrow c=3$

$$
\begin{aligned}
& 4+b c=1 \Rightarrow 4+3 b=1 \Rightarrow b=-1 \\
& a+c=5 \Rightarrow a+3=5 \Rightarrow a=2
\end{aligned}
$$

So $a=2, b=-1, c=3$
2. (i) $\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\left(\begin{array}{ll}c & 0 \\ 0 & d\end{array}\right)=\left(\begin{array}{cc}a c & 0 \\ 0 & b d\end{array}\right)$ so the product of two diagonal matrices is also diagonal.
(ii) $A^{2}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)=\left(\begin{array}{ll}a^{2} & 0 \\ 0 & b^{2}\end{array}\right)$ Generalising, $A^{n}=\left(\begin{array}{cc}a^{n} & 0 \\ 0 & b^{n}\end{array}\right)$.
3. (i) $A^{2}=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)$ $A^{3}=\left(\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 3 \\ 0 & 1\end{array}\right)$
(ii) $A^{k}=\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)$
(ilí) $A^{k} A=\left(\begin{array}{ll}1 & k \\ 0 & 1\end{array}\right)\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)=\left(\begin{array}{cc}1 & k+1 \\ 0 & 1\end{array}\right)$.
Multiplying the expression for $A^{k}$ by $A$ gives the same form of matrix for $A^{k+1}$. This means that if the matrix used $A^{k}$ is correct, the one for $A^{k+1}$ is also correct. Since we know that $A^{1}, A^{2}$ and $A^{3}$ all have this form, then it must be true for all positive integer values of $k$.
(This is an example of proof by induction, which you will meet more

## Edexcel AS FM Matrices 1 Exercise solutions

formally in a later topic).
(iv) $\left(\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right)+a\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right)+b\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=0$
$\left(\begin{array}{cc}1+a+b & n+a \\ 0 & 1+a+b\end{array}\right)=0$
$n+a=0 \quad \Rightarrow a=-n$
$1+a+b=0 \quad \Rightarrow 1-n+b=0 \quad \Rightarrow b=n-1$

