Edexcel AS Further Mathematics Matrices

Section 1: Introduction to matrices

Solutions to Exercise level 1

1.	(í)	A	В	С	(íí)	A	В	С
		A(0	1	0)		AO	1	2)
		B 1				B 1	0	1
		clo	2	0)		c(2	1	0)

2. Multiply the A row by 4, the B row by 5 and the C row by 3.

	м	Т		м	Т
A	(4×4	4×6)	_ A(:	16	24)
В	5×3	5×5	$= \frac{A}{B}$	15	25
С	З×7	з×2)	c (:	21	6)

The total taken for meal A over the two days is $\pm 16 + \pm 24 = \pm 40$. The total taken for meal B over the two days is $\pm 15 + \pm 25 = \pm 40$. The total taken for meal C over the two days is $\pm 21 + \pm 6 = \pm 27$.

3. (i)
$$A + 2B = \begin{pmatrix} 2 & -3 \\ -1 & 5 \end{pmatrix} + 2 \begin{pmatrix} -3 & -1 \\ 2 & 7 \end{pmatrix} = \begin{pmatrix} 2 & -3 \\ -1 & 5 \end{pmatrix} + \begin{pmatrix} -6 & -2 \\ 4 & 14 \end{pmatrix}$$
$$= \begin{pmatrix} -4 & -5 \\ 3 & 19 \end{pmatrix}$$

$$\begin{aligned} \text{(ii)} \ \mathbf{C} - \mathbf{D} &= \begin{pmatrix} 2 & 3 & -4 \\ -1 & 2 & 5 \end{pmatrix} - \begin{pmatrix} -1 & -4 & 2 \\ -3 & 5 & 6 \end{pmatrix} \\ &= \begin{pmatrix} 3 & \mathbf{7} & -6 \\ 2 & -3 & -1 \end{pmatrix} \end{aligned}$$

(ííí) cannot be done as A and C do not have the same order

$$(iv) \quad 3D - C = 3 \begin{pmatrix} -1 & -4 & 2 \\ -3 & 5 & 6 \end{pmatrix} - \begin{pmatrix} 2 & 3 & -4 \\ -1 & 2 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} -3 & -12 & 6 \\ -9 & 15 & 18 \end{pmatrix} - \begin{pmatrix} 2 & 3 & -4 \\ -1 & 2 & 5 \end{pmatrix}$$
$$= \begin{pmatrix} -5 & -15 & 10 \\ -8 & 13 & 13 \end{pmatrix}$$

Edexcel AS FM Matrices 1 Exercise solutions

4. (i)
$$AB = \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} -1 & 3 & 2 \\ 5 & 1 & -2 \end{pmatrix} = \begin{pmatrix} 3 & 7 & 2 \\ 23 & -5 & -14 \end{pmatrix}$$

(ii) $AC = \begin{pmatrix} 2 & 1 \\ -3 & 4 \end{pmatrix} \begin{pmatrix} 3 & -1 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 7 & 0 \\ -5 & 11 \end{pmatrix}$

(ííí) BC cannot be calculated as the matrices are not conformable (the number of columns in B is not the same as the number of rows in C)

(iv)
$$BD = \begin{pmatrix} -1 & 3 & 2 \\ 5 & 1 & -2 \end{pmatrix} \begin{pmatrix} 4 & -1 \\ 2 & 5 \\ -3 & 1 \end{pmatrix} = \begin{pmatrix} -4 & 18 \\ 28 & -2 \end{pmatrix}$$

5. (i)
$$A + B = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} + \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 2 & 6 \\ 6 & 2 \end{pmatrix}$$

 $AB = \begin{pmatrix} 2 & 3 \\ 3 & 2 \end{pmatrix} \begin{pmatrix} 0 & 3 \\ 3 & 0 \end{pmatrix} = \begin{pmatrix} 9 & 6 \\ 6 & 9 \end{pmatrix}$
(ii) $A + B - AB = \begin{pmatrix} 2 & 6 \\ 6 & 2 \end{pmatrix} - \begin{pmatrix} 9 & 6 \\ 6 & 9 \end{pmatrix} = \begin{pmatrix} -7 & 0 \\ 0 & -7 \end{pmatrix} = -7 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = -71$

6. (i)
$$2A + C = 2(1 \ 4) + (2 \ -1)$$

 $= (2 \ 8) + (2 \ -1)$
 $= (4 \ 7)$

(ii)
$$AB = \begin{pmatrix} 1 & 4 \end{pmatrix} \begin{pmatrix} -3 \\ 2 \end{pmatrix} = (5)$$

(iii) BC =
$$\begin{pmatrix} -3 \\ 2 \end{pmatrix} (2 -1) = \begin{pmatrix} -6 & 3 \\ 4 & -2 \end{pmatrix}$$

$$\mathcal{F} \cdot AB = \begin{pmatrix} 3 & 1 \\ x & 2 \end{pmatrix} \begin{pmatrix} 6 & 2 \\ 4 & y \end{pmatrix} = \begin{pmatrix} 22 & 6+y \\ 6x+8 & 2x+2y \end{pmatrix}$$
$$BA = \begin{pmatrix} 6 & 2 \\ 4 & y \end{pmatrix} \begin{pmatrix} 3 & 1 \\ x & 2 \end{pmatrix} = \begin{pmatrix} 18+2x & 10 \\ 12+xy & 4+2y \end{pmatrix}$$

Edexcel AS FM Matrices 1 Exercise solutions

$$AB = BA \Rightarrow \begin{pmatrix} 22 & 6+y \\ 6x+8 & 2x+2y \end{pmatrix} = \begin{pmatrix} 18+2x & 10 \\ 12+xy & 4+2y \end{pmatrix}$$

$$22 = 18 + 2x \qquad \Rightarrow x = 2$$

$$6 + y = 10 \qquad \Rightarrow y = 4$$

Check: $6x + 8 = 12 + 8 = 20$
 $2x + 2y = 4 + 8 = 12$
 $12 + xy = 12 + 8 = 20$
 $4 + 2y = 4 + 8 = 12$

8.
$$M^{2} = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix}$$

 $N^{2} = \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix} \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 6 & -10 \\ -5 & 11 \end{pmatrix}$
 $M^{2} - N^{2} = \begin{pmatrix} 1 & 4 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 6 & -10 \\ -5 & 11 \end{pmatrix} = \begin{pmatrix} -5 & 14 \\ 5 & -10 \end{pmatrix}$

$$M + N = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} + \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} 3 & 0 \\ -1 & 4 \end{pmatrix}$$
$$M - N = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} - \begin{pmatrix} 2 & -2 \\ -1 & 3 \end{pmatrix} = \begin{pmatrix} -1 & 4 \\ 1 & -2 \end{pmatrix}$$
$$(M + N) (M - N) = \begin{pmatrix} 3 & 0 \\ -1 & 4 \end{pmatrix} \begin{pmatrix} -1 & 4 \\ 1 & -2 \end{pmatrix} = \begin{pmatrix} -3 & 12 \\ 5 & -12 \end{pmatrix}$$

 $(M+N)(M-N) = M^2 + NM - MN - N^2$ Since matrix multiplication is not commutative, $NM \neq MN$.