Edexcel AS Further Maths Further calculus

Section 1: Volumes of revolution

Exercise level 3 solutions

1.

Gradient of the line from $(2,1)$ to $(3,3)=\frac{3-1}{3-2}=2$
Equation of line is $y-1=2(x-2)$

$$
y=2 x-3
$$

So need to rotate this line from $y=1$ to $y=3$.
$y=2 x-3 \Rightarrow x=\frac{1}{2}(y+3)$

$$
\begin{aligned}
\text { volume } & =\pi \int_{1}^{3} x^{2} d y \\
& =\frac{1}{4} \pi \int_{1}^{3}(y+3)^{2} d y \\
& =\frac{1}{4} \pi \int_{1}^{3}\left(y^{2}+6 y+9\right) d y \\
& =\frac{1}{4} \pi\left[\frac{1}{3} y^{3}+3 y^{2}+9 y\right]_{1}^{3} \\
& =\frac{1}{4} \pi\left(9+27+27-\left(\frac{1}{3}+3+9\right)\right) \\
& =\frac{38}{3} \pi
\end{aligned}
$$

2. A circle has equation $x^{2}+y^{2}=r^{2}$

The semicircle shown below is $y=\sqrt{r^{2}-x^{2}}$

If this is rotated through 360° about the x-axis, this results in a sphere of radius r.

Edexcel AS FM Further calculus 1 Exercise solutions

$$
\begin{aligned}
\text { volume } & =\pi \int_{-r}^{r} y^{2} d x \\
& =\pi \int_{-r}^{r}\left(r^{2}-x^{2}\right) d x \\
& =\pi\left[\left(r^{2} x-\frac{1}{3} x^{3}\right]_{-r}^{r}\right. \\
& =\pi\left(r^{3}-\frac{1}{3} r^{3}-\left(-r^{3}-\frac{1}{3} r^{3}\right)\right) \\
& =\frac{4}{3} \pi r^{3}
\end{aligned}
$$

3. Use a circle with radius g and centre $(0,9)$.

The equation of this circle is $x^{2}+(y-9)^{2}=81$

$$
(y-9)^{2}=81-x^{2}
$$

The bottom half of the circle is given by $y-g=-\sqrt{81-x^{2}}$

$$
y=9-\sqrt{81-x^{2}}
$$

So the region that needs to be rotated is the part of this curve between $y=0$ and $y=6$.
volume $=\pi \int_{0}^{6} x^{2} d y$
$=\pi \int_{0}^{6}\left(81-(y-9)^{2}\right) d y$
$=\pi \int_{0}^{6}\left(81-\left(y^{2}-18 y+81\right)\right) d y$
$=\pi \int_{0}^{6}\left(-y^{2}+18 y\right) d y$
$=\pi\left[-\frac{1}{3} y^{3}+9 y^{2}\right]_{0}^{6}$
$=\pi(-72+324)$
$=252 \pi$

Edexcel AS FM Further calculus 1 Exercise solutions

4.

At point $A, x=2$ and $y=\frac{1}{8} \times 2^{2}+2=2.5$
So B is $(0,2.5)$
The required volume can be found by finding the volume of the cylinder
formed by rotating the line $x=2$ from $y=0$ to $y=2.5$ about the y-axis, and then subtracting the volume formed by rotating the curve $y=\frac{1}{8} x^{2}+2$ from $y=2$ to $y=2.5$.

The cylinder has radius 2 and height 2.5.
Volume of cylinder $=\pi r^{2} h=\pi \times 2^{2} \times 2.5=10 \pi$

$$
y=\frac{1}{8} x^{2}+2 \Rightarrow \frac{1}{8} x^{2}=y-2 \Rightarrow x^{2}=8 y-16
$$

volume of solid formed by rotating curve is given by

$$
\begin{aligned}
\text { volume } & =\pi \int_{2}^{2.5} x^{2} d y \\
& =\pi \int_{2}^{2.5}(8 y-16) d y \\
& =\pi\left[4 y^{2}-16 y\right]_{2}^{2.5} \\
& =\pi(25-40-(16-32)) \\
& =\pi
\end{aligned}
$$

So the required volume $=10 \pi-\pi=9 \pi$

