

Section 1: Volumes of revolution

Exercise level 3 solutions

1.

Gradient of the line from (2, 1) to (3, 3) = $\frac{3-1}{3-2} = 2$ Equation of line is y-1=2(x-2) y=2x-3So need to rotate this line from y=1 to y=3. $y=2x-3 \implies x=\frac{1}{2}(y+3)$ Volume = $\pi \int_{1}^{3} x^{2} dy$ $=\frac{1}{4}\pi \int_{1}^{3} (y^{2}+6y+9) dy$ $=\frac{1}{4}\pi \left[\frac{1}{3}y^{3}+3y^{2}+9y\right]_{1}^{3}$ $=\frac{1}{4}\pi \left(9+27+27-(\frac{1}{3}+3+9)\right)$ $=\frac{38}{3}\pi$

2. A círcle has equation $x^2 + y^2 = r^2$ The semicircle shown below is $y = \sqrt{r^2 - x^2}$

If this is rotated through 360° about the x-axis, this results in a sphere of radius r.

Edexcel AS FM Further calculus 1 Exercise solutions

Volume =
$$\pi \int_{-r}^{r} y^2 dx$$

= $\pi \int_{-r}^{r} (r^2 - x^2) dx$
= $\pi \left[(r^2 x - \frac{1}{3} x^3) \right]_{-r}^{r}$
= $\pi \left(r^3 - \frac{1}{3} r^3 - (-r^3 - \frac{1}{3} r^3) \right)$
= $\frac{4}{3} \pi r^3$

3. Use a circle with radius 9 and centre (0, 9). The equation of this circle is $x^2 + (y - 9)^2 = 81$ $(y - 9)^2 = 81 - x^2$

The bottom half of the circle is given by $y - 9 = -\sqrt{81 - x^2}$ $y = 9 - \sqrt{81 - x^2}$

So the region that needs to be rotated is the part of this curve between y = oand y = 6.

Volume =
$$\pi \int_{0}^{6} x^{2} dy$$

= $\pi \int_{0}^{6} (81 - (y - 9)^{2}) dy$
= $\pi \int_{0}^{6} (81 - (y^{2} - 18y + 81)) dy$
= $\pi \int_{0}^{6} (-y^{2} + 18y) dy$
= $\pi \left[-\frac{1}{3}y^{3} + 9y^{2} \right]_{0}^{6}$
= $\pi (-72 + 324)$
= 252π

Edexcel AS FM Further calculus 1 Exercise solutions

At point A, x = 2 and $y = \frac{1}{8} \times 2^{2} + 2 = 2.5$ So B is (0, 2.5)

The required volume can be found by finding the volume of the cylinder formed by rotating the line x = 2 from y = 0 to y = 2.5 about the y-axis, and then subtracting the volume formed by rotating the curve $y = \frac{1}{8}x^2 + 2$ from y = 2 to y = 2.5.

The cylinder has radius 2 and height 2.5. Volume of cylinder = $\pi r^2 h = \pi \times 2^2 \times 2.5 = 10\pi$

 $y = \frac{1}{8}x^{2} + 2 \implies \frac{1}{8}x^{2} = y - 2 \implies x^{2} = 8y - 16$ Volume of solid formed by rotating curve is given by
Volume = $\pi \int_{2}^{2.5} x^{2} dy$ $= \pi \int_{2}^{2.5} (8y - 16) dy$ $= \pi [4y^{2} - 16y]_{2}^{2.5}$ $= \pi (25 - 40 - (16 - 32))$ $= \pi$

So the required volume = $10\pi - \pi = 9\pi$