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Section 2: Complex roots of polynomials 
 

Solutions to Exercise level 3 
 

1. The roots of the equation must be conjugate pairs. 

Let the roots be ip q   

so the equation is 
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 can be a root of the equation. 

 

 

2. (i) By inspection, 1z   is a real root of the equation. 
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   For the other two roots to be complex, the discriminant of the quadratic  

   must be negative: 2
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(iii) The roots of the quadratic factor are 
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   So for the complex roots, 
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   so all the complex roots lie on the unit circle. 

    

 

3. (i) Let iz a b   and iw c d  . 
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   and so on, ending up with  

   (q( ))* * * ... * ( *) ( *)m
m mz a z z z a z q z    
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(iii) 

   

1
1 1 0

1

1 1 0

p( )

p( ) * *

n n
n n

n n
n n

z a z a z a z a

z a z a z a z a









    

    

  

    Since ( )* * *z w z w   , 

            1
1 1 0p( ) * * * * *n n

n nz a z a z a z a

      

   Using the result from (ii), 

     1
1 1 0p( ) * ( *) ( *) * p( *)n n

n nz a z a z a z a z

       

 

    This result is very powerful. It tells us that, if a complex number 0z z  is  

   such that 0p( ) 0z  , then  0p( ) * 0* 0z    

   But since  p( ) * p( *)z z , this means that p( *) 0z   

   and therefore if 0z z  is the root of a polynomial with real coefficients,  

   then 0 *z z  is also a root of the polynomial. 

 

 

 

 


