Edexcel AS Further Maths Roots of polynomials integral

Section 2: Complex roots of polynomials

Solutions to Exercise level 3

1. The roots of the equation must be conjugate pairs.

Let the roots be $p \pm i q$
so the equation is $x=p \pm i q$

$$
\begin{aligned}
& x-p= \pm i q \\
& (x-p)^{2}=(\pm i q)^{2} \\
& x^{2}-2 p x+p^{2}=-q^{2} \\
& x^{2}-2 p x+p^{2}+q^{2}=0
\end{aligned}
$$

so $a=-2 p$ and $b=p^{2}+q^{2}$
For $\frac{1+i}{4}, p=\frac{1}{4}$ and $q=\frac{1}{4}$, so $2 p$ is not an integer
For $\frac{1+i \sqrt{11}}{2}, p=\frac{1}{2}$ and $q=\frac{1}{2} \sqrt{11}$, so $2 p$ is an integer,

$$
\text { and } p^{2}+q^{2}=\frac{1}{4}+\frac{11}{4}=\frac{12}{4}=3 \text { which is an integer }
$$

For $\frac{1}{2}+i, p=\frac{1}{2}$ and $q=1$, so $p^{2}+q^{2}=\frac{1}{4}+1$ which is not an integer
For $\frac{1-i \sqrt{7}}{2}, p=\frac{1}{2}$ and $q=-\frac{\sqrt{7}}{2}$, so $2 p$ is an integer,
and $p^{2}+q^{2}=\frac{1}{4}+\frac{7}{4}=\frac{8}{4}=2$ which is an integer
so $\frac{1+i \sqrt{11}}{2}$ and $\frac{1-i \sqrt{7}}{2}$ can be a root of the equation.
2. (i) By inspection, $z=1$ is a real root of the equation.
(ii) $z^{3}-a z^{2}+a z-1=0$
$(z-1)\left(z^{2}+(1-a) z+1\right)=0$
For the other two roots to be complex, the discriminant of the quadratic must be negative: $(1-a)^{2}-4 \times 1 \times 1<0$

$$
\begin{aligned}
& 1-2 a+a^{2}-4<0 \\
& a^{2}-2 a-3<0 \\
& (a-3)(a+1)<0 \\
& -1<a<3
\end{aligned}
$$

(iii) The roots of the quadratic factor are $z=\frac{-(1-a) \pm \sqrt{(a-3)(a+1)}}{2}$

$$
=\frac{a-1 \pm i \sqrt{(3-a)(a+1)}}{2}
$$

So for the complex roots, $x=\frac{a-1}{2}$ and $y=\frac{\sqrt{(3-a)(a+1)}}{2}$

$$
\begin{aligned}
x^{2}+y^{2} & =\frac{(a-1)^{2}}{4}+\frac{(3-a)(a+1)}{4} \\
& =\frac{a^{2}-2 a+1+3 a-a^{2}+3-a}{4} \\
& =\frac{4}{4}=1
\end{aligned}
$$

so all the complex roots lie on the unit circle.
3. (i) Let $z=a+i b$ and $w=c+i d$.

$$
\begin{aligned}
(z+w)^{*} & =(a+i b+c+i d)^{*} \\
& =(a+c+i(b+d))^{*} \\
& =a+c-i(b+d) \\
& =a+c-i b-i d \\
& =a-i b+c-i d \\
& =z^{*}+w^{*}
\end{aligned}
$$

$$
(z w)^{*}=((a+i b)(c+i d)) *
$$

$$
=(a c+i b c+i b d-a d) *
$$

$$
=(a c-b d+i(b c+a d)) *
$$

$$
=a c-b d-i(b c+a d)
$$

$$
z^{*} w^{*}=(a-i b)(c-i d)
$$

$$
=a c-i b c-i a d-b d
$$

$$
=a c-b d-i(b c+a d)
$$

(ii) $\quad q(z)=a_{m} z^{m}$

$$
\begin{aligned}
(q(z))^{*} & =\left(a_{m} z^{m}\right)^{*} \\
& =a_{m}\left(z^{m}\right)^{*} \\
& =a_{m}\left(z z^{m-1}\right)^{*} \\
& =a_{m} z^{*}\left(z^{m-1}\right)^{*} \\
& =a_{m} z^{*}\left(z z^{m-2}\right)^{*} \\
& =a_{m} z^{*} z^{*}\left(z^{m-2}\right)^{*}
\end{aligned}
$$

and so on, ending up with
$(q(z))^{*}=a_{m} z^{*} z^{*} \ldots z^{*}=a_{m}\left(z^{*}\right)^{m}=q\left(z^{*}\right)$

Edexcel AS FM Roots of polynomials 2 Exercise solns

(iií) $p(z)=a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}$ $(p(z))^{*}=\left(a_{n} z^{n}+a_{n-1} z^{n-1}+\cdots+a_{1} z+a_{0}\right)^{*}$ Since $(z+w)^{*}=z^{*}+w^{*}$, $(p(z))^{*}=\left(a_{n} z^{n}\right) *+\left(a_{n-1} z^{n-1}\right) *+\cdots+\left(a_{1} z\right)^{*}+\left(a_{0}\right)^{*}$ using the result from (ii),

$$
(p(z))^{*}=a_{n}\left(z^{*}\right)^{n}+a_{n-1}\left(z^{*}\right)^{n-1}+\cdots+a_{1} z^{*}+a_{0}=p\left(z^{*}\right)
$$

This result is very powerful. It tells us that, if a complex number $z=z_{0}$ is such that $p\left(z_{0}\right)=0$, then $\left(p\left(z_{0}\right)\right)^{*}=0^{*}=0$
But since $(p(z))^{*}=p\left(z^{*}\right)$, this means that $p\left(z^{*}\right)=0$
and therefore if $z=z_{0}$ is the root of a polynomial with real coefficients, then $z=z_{0}{ }^{*}$ is also a root of the polynomial.

