Edexcel AS Further Maths Roots of polynomials

Section 2: Complex roots of polynomials

Solutions to Exercise level 2

1. 3 + i is a root, so 3 - i is also a root. Therefore a quadratic factor is $(z - 3 - i)(z - 3 + i) = (z - 3)^2 + 1$ $= z^2 - 6z + 10$ 1 + 3i is a root, so 1 - 3i is also a root. Therefore a quadratic factor is $(z - 1 - 3i)(z - 1 + 3i) = (z - 1)^2 + 9$ $= z^2 - 2z + 10$ So the equation is $(z^2 - 6z + 10)(z^2 - 2z + 10) = 0$ $z^4 - 8z^3 + 32z^2 - 80z + 100 = 0$

-2.

2. Since 1+i is a root, 1-i is also a root. The sum of the roots is 0 since the coefficient of z^2 is zero so $1+i+1-i+\alpha=0$

$$\alpha = -2$$

So the three roots are $1 + i$, $1 - i$ and

The product of the roots is
$$-2(1+i)(1-i) = -k$$

 $\Rightarrow k = 2(1+1)$
 $\Rightarrow k = 4$

3.
$$z = -1 + i$$

 $z^{2} = (-1 + i)^{2} = 1 - 2i - 1 = -2i$
 $z^{3} = -2i(-1 + i) = 2i + 2 = 2 + 2i$
 $z^{4} = (2 + 2i)(-1 + i) = -2 - 2 = -4$
Substituting into $z^{4} - 2z^{3} - z^{2} + 2z + 10$:
 $-4 - 2(2 + 2i) - (-2i) + 2(-1 + i) + 10$
 $= -4 - 4 - 4i + 2i - 2 + 2i + 10$
 $= 0$
so $-1 + i$ is a root.
Since $-1 + i$ is a root, $-1 - i$ is also a root
So a quadratic factor is $(z + 1 - i)(z + 1 + i) = (z + 1)^{2} + 1$
 $= z^{2} + 2z + 2$
 $z^{4} - 2z^{3} - z^{2} + 2z + 10 = (z^{2} + 2z + 2)(z^{2} - 4z + 5)$
The other factors are the roots of the quadratic equation $z^{2} - 4z + 5 = 0$

Edexcel AS FM Roots of polynomials 2 Exercise solns

$$Z = \frac{4 \pm \sqrt{16 - 4 \times 1 \times 5}}{2}$$
$$= \frac{4 \pm \sqrt{-4}}{2}$$
$$= \frac{4 \pm 2i}{2}$$
$$= 2 \pm i$$
So the other roots are -1 - i, 2 + i and 2 - i.

4. 1+2i is a root so 1-2i is another root A quadratic factor is $(z-1-2i)(z-1+2i) = (z-1)^2 + 4$ $= z^2 - 2z + 5$ $z^4 - 6z^3 + 18z^2 - 30z + 25 = 0$ $(z^2 - 2z + 5)(z^2 - 4z + 5) = 0$ $z^2 - 4z + 5 = 0 \implies z = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times 1 \times 5}}{2 \times 1}$ $\implies z = \frac{4 \pm \sqrt{-4}}{2} = \frac{4 \pm 2i}{2} = 2 \pm i$ So the roots are $z = 1 \pm 2i$ and $z = 2 \pm i$.

5. Since p + qi is a root, p - qi is also a root. The sum of the roots is 0 since the coefficient of z^2 is zero so $p + qi + p - qi + \alpha = 0$ $\alpha = -2p$

So the three roots are p + qi, p - qi and -2p.

(i)
$$\alpha\beta\gamma = -b$$

 $-2p(p+qi)(p-qi) = -b$
 $2p(p^2+q^2) = b$

(ii)
$$\sum \alpha \beta = a$$

 $-2p(p+qi) - 2p(p-qi) + (p-qi)(p+qi) = a$
 $-2p^2 - 2p^2 + p^2 + q^2 = a$
 $-3p^2 + q^2 = a$

(iii) From (ii), $q^2 = 3p^2 + a$ Substituting into the result from (i):

Edexcel AS FM Roots of polynomials 2 Exercise solns

 $2p(p^{2}+3p^{2}+a) = b$ $2p(4p^{2}+a) = b$ $8p^{3}+2ap-b = 0$ so p is a root of the equation $8x^{3}+2ax-b=0$