Edexcel AS Further Maths Roots of polynomials "integral

Section 2: Complex roots of polynomials

Solutions to Exercise level 2

1. 3 +i is a root, so 3 -i is also a root.

Therefore a quadratic factor is $(z-3-i)(z-3+i)=(z-3)^{2}+1$

$$
=z^{2}-6 z+10
$$

$1+3 i$ is a root, so 1 - $3 i$ is also a root.
Therefore a quadratic factor is $(z-1-3 i)(z-1+3 i)=(z-1)^{2}+9$

$$
=z^{2}-2 z+10
$$

So the equation is $\left(z^{2}-6 z+10\right)\left(z^{2}-2 z+10\right)=0$

$$
z^{4}-8 z^{3}+32 z^{2}-80 z+100=0
$$

2. Since $1+i$ is a root, 1 - i is also a root.

The sum of the roots is 0 since the coefficient of z^{2} is zero

$$
\begin{aligned}
& \text { so } 1+i+1-i+\alpha=0 \\
& \alpha=-2
\end{aligned}
$$

so the three roots are $1+i, 1-i$ and -2 .

The product of the roots is $-2(1+i)(1-i)=-k$

$$
\begin{aligned}
& \Rightarrow k=2(1+1) \\
& \Rightarrow k=4
\end{aligned}
$$

3. $z=-1+i$
$z^{2}=(-1+i)^{2}=1-2 i-1=-2 i$
$z^{3}=-2 i(-1+i)=2 i+2=2+2 i$
$z^{4}=(2+2 i)(-1+i)=-2-2=-4$
substituting into $z^{4}-2 z^{3}-z^{2}+2 z+10$:

$$
\begin{aligned}
-4-2 & (2+2 i)-(-2 i)+2(-1+i)+10 \\
& =-4-4-4 i+2 i-2+2 i+10 \\
& =0
\end{aligned}
$$

so $-1+i$ is a root.
Since $-1+i$ is a root, -1 - i is also a root
so a quadratic factor is $(z+1-i)(z+1+i)=(z+1)^{2}+1$
$=z^{2}+2 z+2$
$z^{4}-2 z^{3}-z^{2}+2 z+10=\left(z^{2}+2 z+2\right)\left(z^{2}-4 z+5\right)$
The other factors are the roots of the quadratic equation $z^{2}-4 z+5=0$

Edexcel AS FM Roots of polynomials 2 Exercise solns

$$
\begin{aligned}
z & =\frac{4 \pm \sqrt{16-4 \times 1 \times 5}}{2} \\
& =\frac{4 \pm \sqrt{-4}}{2} \\
& =\frac{4 \pm 2 i}{2} \\
& =2 \pm i
\end{aligned}
$$

So the other roots are $-1-i, 2+i$ and $2-i$.
4. $1+2 i$ is a root so $1-2 i$ is another root

A quadratic factor is $(z-1-2 i)(z-1+2 i)=(z-1)^{2}+4$

$$
=z^{2}-2 z+5
$$

$z^{4}-6 z^{3}+18 z^{2}-30 z+25=0$
$\left(z^{2}-2 z+5\right)\left(z^{2}-4 z+5\right)=0$
$z^{2}-4 z+5=0 \Rightarrow z=\frac{-(-4) \pm \sqrt{(-4)^{2}-4 \times 1 \times 5}}{2 \times 1}$
$\Rightarrow z=\frac{4 \pm \sqrt{-4}}{2}=\frac{4 \pm 2 i}{2}=2 \pm i$
So the roots are $z=1 \pm 2 i$ and $z=2 \pm i$.
5. Since $p+q^{i}$ is a root, $p-q i$ is also a root.

The sum of the roots is 0 since the coefficient of z^{2} is zero

$$
\begin{aligned}
& \text { so } p+q^{i}+p-q^{i}+\alpha=0 \\
& \alpha=-2 p
\end{aligned}
$$

so the three roots are $p+q^{i}, p-q i$ and $-2 p$.
(i) $\alpha \beta \gamma=-b$
$-2 p\left(p+q^{\prime}\right)\left(p-q^{\prime}\right)=-b$
$2 p\left(p^{2}+q^{2}\right)=b$
(ii) $\sum \alpha \beta=a$
$-2 p\left(p+q^{\prime}\right)-2 p\left(p-q^{\prime}\right)+\left(p-q^{\prime}\right)\left(p+q^{\prime}\right)=a$
$-2 p^{2}-2 p^{2}+p^{2}+q^{2}=a$
$-3 p^{2}+q^{2}=a$
(iii) From (ii), $q^{2}=3 p^{2}+a$
substituting into the result from (i):

Edexcel AS FM Roots of polynomials 2 Exercise solns

$$
\begin{aligned}
& 2 p\left(p^{2}+3 p^{2}+a\right)=6 \\
& 2 p\left(4 p^{2}+a\right)=6 \\
& 8 p^{3}+2 a p-b=0
\end{aligned}
$$

so p is a root of the equation $8 x^{3}+2 a x-b=0$

