Edexcel AS Further Maths Roots of polynomials integral

Section 2: Complex roots of polynomials

Solutions to Exercise level 1

1. (i) The other root is $4+5 i$
(ii) $z=4 \pm 5 i$
$z-4=5 i$
$(z-4)^{2}=(5 i)^{2}$
$z^{2}-8 z+16=-25$
$z^{2}-8 z+41=0$
so $p=-8, q=41$
2. (i) Substituting $z=1+i$:

$$
\begin{aligned}
z^{3}-2 z+4 & =(1+i)^{3}-2(1+i)+4 \\
& =1+3 i+3 i^{2}+i^{3}-2-2 i+4 \\
& =1+3 i-3-i-2-2 i+4 \\
& =1-3-2+4+(3-1-2) i \\
& =0
\end{aligned}
$$

so $z=1+i$ is a root
(ii) The other complex root is $z=1$ - i
(iii) The sum of the roots is 0 since the coefficient of z^{2} is zero.

Let the third root be α
$1+i+1-i+\alpha=0$
$2+\alpha=0$
$\alpha=-2$
so the other root is $z=-2$
3. $1-2 i$ is a root, so $1+2 i$ is also a root.

The sum of the roots is o since the coefficient of z^{2} is zero.
Let the third root be α
$1+2 i+1-2 i+\alpha=0$
$2+\alpha=0$
$\alpha=-2$
The real root is $z=-2$.

Edexcel AS FM Roots of polynomials 2 Exercise solns

4. Since $1+3 i$ is a root, $1-3 i$ is another root.

The sum of the roots is 3
Let the third root be α
$1+3 i+1-3 i+\alpha=3$
$2+\alpha=3$
$\alpha=1$
so the third root is $z=1$
5. $z=2$ is a root so $(z-2)$ is a factor
$z^{3}-4 z^{2}+6 z-4=0$
$(z-2)\left(z^{2}-2 z+2\right)=0$
$z^{2}-2 z+2=0 \Rightarrow z=\frac{-(-2) \pm \sqrt{(-2)^{2}-4 \times 1 \times 2}}{2 \times 1}$
$\Rightarrow z=\frac{2 \pm \sqrt{-4}}{2}=\frac{2 \pm 2 i}{2}=1 \pm i$

