Edexcel AS Further Maths Roots of polynomials integral

Section 1: Roots and coefficients

Solutions to Exercise level 1

1. (i) $2 x^{2}+9 x-5=0$
sum of roots $=-\frac{b}{a}=-\frac{9}{2}$
Product of roots $=\frac{c}{a}=\frac{-5}{2}=-\frac{5}{2}$
(ii) $5 x^{2}-x+2=0$
sum of roots $=-\frac{b}{a}=-\frac{-1}{5}=\frac{1}{5}$
Product of roots $=\frac{c}{a}=\frac{2}{5}$
(iii) $3 x(x+2)=4 x-5$
$3 x^{2}+6 x=4 x-5$
$3 x^{2}+2 x+5=0$
Sum of roots $=-\frac{b}{a}=-\frac{2}{3}$
Product of roots $=\frac{c}{a}=\frac{5}{3}$
2. (i) $x^{3}-3 x^{2}+2 x+4=0$

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\frac{b}{a}=-\frac{-3}{1}=3 \\
& \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=\frac{2}{1}=2 \\
& \alpha \beta \gamma=-\frac{d}{a}=-\frac{4}{1}=-4
\end{aligned}
$$

(ii) $2 x^{3}+5 x-3=0$

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\frac{b}{a}=-\frac{0}{2}=0 \\
& \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=\frac{5}{2} \\
& \alpha \beta \gamma=-\frac{d}{a}=-\frac{-3}{2}=\frac{3}{2}
\end{aligned}
$$

Edexcel AS FM Roots of polynomials 1 Exercise solns
(iii) $3 x^{3}+x^{2}-4 x-1=0$

$$
\begin{aligned}
& \alpha+\beta+\gamma=-\frac{b}{a}=-\frac{1}{3} \\
& \alpha \beta+\beta \gamma+\gamma \alpha=\frac{c}{a}=\frac{-4}{3}=-\frac{4}{3} \\
& \alpha \beta \gamma=-\frac{d}{a}=-\frac{-1}{3}=\frac{1}{3}
\end{aligned}
$$

3. $3 x^{2}+11 x-4=0$
$\alpha+\beta=-\frac{11}{3}$
$\alpha \beta=-\frac{4}{3}$
(i) For new equation,

$$
\begin{aligned}
& \text { sum of roots }=\alpha-2+\beta-2=(\alpha+\beta)-4 \\
&=-\frac{11}{3}-4=-\frac{23}{3} \\
& \text { and product of roots }=(\alpha-2)(\beta-2)=\alpha \beta-2(\alpha+\beta)+4 \\
&=-\frac{4}{3}+\frac{22}{3}+4=10
\end{aligned}
$$

so for new equation, $-\frac{b}{a}=-\frac{23}{3}$ and $\frac{c}{a}=10$
Taking $a=3$ gives $b=23$ and $c=30$
The new equation is $3 x^{2}+23 x+30=0$
(ii) For new equation,

$$
\begin{aligned}
\text { sum of roots } & =3 \alpha+3 \beta=3(\alpha+\beta) \\
& =3 \times-\frac{11}{3}=-11
\end{aligned}
$$

and product of roots $=3 \alpha \times 3 \beta=9 \alpha \beta$

$$
=9 x-\frac{4}{3}=-12
$$

So for new equation, $-\frac{b}{a}=-11$ and $\frac{c}{a}=-12$
Taking $a=1$ gives $b=11$ and $c=-12$
The new equation is $x^{2}+11 x-12=0$
4. $p+q=5, p^{2}+q^{2}=19$
$(p+q)^{2}=p^{2}+q^{2}+2 p q$
$5^{2}=19+2 p q$
$6=2 p q$
$p q=3$

Edexcel AS FM Roots of polynomials 1 Exercise solns

Sum of roots $=-\frac{b}{a} \Rightarrow 5=-\frac{b}{a} \Rightarrow b=-5 a$
Product of roots $=\frac{c}{a} \Rightarrow 3=\frac{c}{a} \Rightarrow c=3 a$
Putting $a=1$ gives $b=-5$ and $c=3$
A quadratic equation with roots p and q is $x^{2}-5 x+3=0$
5. $x^{2}+x-6=0$
$\alpha+\beta=-1$
$\alpha \beta=-6$
$\alpha+\beta+\frac{1}{\alpha}+\frac{1}{\beta}=\alpha+\beta+\frac{\beta+\alpha}{\alpha \beta}$

$$
\begin{aligned}
& =-1+\frac{-1}{-6} \\
& =-1+\frac{1}{6} \\
& =-\frac{5}{6}
\end{aligned}
$$

6. Sum of roots $=-5$
$-1+4+\alpha=-5$
$\alpha=-8$
The third root is -8.
$\sum \alpha \beta=a$
$(-1 \times 4)+(4 \times-8)+(-8 \times-1)=a$
$-4-32+8=a$
$a=-28$
$\alpha \beta \gamma=-b$
$-1 \times 4 \times-8=-6$
$b=-32$
