Edexcel AS Further Maths Complex numbers

Section 2: Loci in the complex plane

Solutions to Exercise level 2

1. (i) $|z-1+i|=1$
$|z-(1-i)|=1$
This is a circle, centre 1 - i, radius 1.

(ii) $|z-2-3 i|<4$
$|z-(2+3 i)|<4$
This is the interior of a circle, centre $2+3 i$, radius 4.

(iii) $1 \leq|z| \leq 2$

This is the region in between two circles, centres the origin, radii 1 and 2 respectively. The two circles are included.

Edexcel AS FM Complex numbers 2 Exercise solns

(iv) $|z-1|>|z-i|$

The boundary of this set of points is the perpendicular bisector of the points 1 and i. The locus is the region closer to the point i than the point 1 , and does not include the perpendicular bisector itself.

2

The point of intersection of the lines $x=1$ and $y=x$ is $(1,1)$ so the value of z that satisfies both equations is $1+i$.
3. $|z-3|=3$ is a circle, centre 3 , radius 3 .
$|z|=|z-2|$ is the perpendicular bisector of the line joining the origin and the point $(2,0)$.

The equation of the circle is $(x-3)^{2}+y^{2}=9$
The equation of the line is $x=1$.

At the points of intersection,

$$
\begin{aligned}
& (1-3)^{2}+y^{2}=9 \\
& 4+y^{2}=9 \\
& y= \pm \sqrt{5}
\end{aligned}
$$

The complex numbers satisfying both equations are $1+\sqrt{5} i$ and $1-\sqrt{5} i$.

Edexcel AS FM Complex numbers 2 Exercise solns

4. The point z lies on a circle, centre $(0,1)$ and radius 1 .

The value of $|z+1|$ is the distance of the point z from the point $(-1,0)$.

The diagram shows the points P and Q which give the least and greatest values of $|z+1|$ respectively.

The distance $A B=\sqrt{1^{2}+1^{2}}=\sqrt{2}$
$P B=1$ so $A P=\sqrt{2}-1$.
$A Q=1+A B=\sqrt{2}+1$.
The greatest and least values of $|z+1|$ are $\sqrt{2}+1$ and $\sqrt{2}-1$.
5. (i) $\arg (z+2)=-\frac{2 \pi}{3}$

This is a half-line, starting at -2 , at an angle of $\frac{2 \pi}{3}$ below the positive real axis.

(ii) $\arg (z+2+i)=\frac{\pi}{2}$

This is a half-line, starting at $-2-i$, at an angle of $\frac{\pi}{2}$ above the positive real axis.

Edexcel AS FM Complex numbers 2 Exercise solns

The boundaries of this region are two half-lines, both starting at 2 , one at an angle to $\frac{\pi}{3}$ to the positive real axis, and the other on the negative real axis.

6. $|z+2 i|=1$ is a circle, centre $-2 i$ and radius 1 .

From diagram, $\sin \theta=\frac{1}{2}$

$$
\theta=30^{\circ}
$$

The greatest value of $\arg z$ is $-\frac{\pi}{3}$
The least value of $\arg z$ is $-\frac{2 \pi}{3}$

Edexcel AS FM Complex numbers 2 Exercise solns

$$
\text { 7. }|z+2+i|=|z-4+i|, \begin{aligned}
& \\
& (x+2)^{2}+(y+1)^{2}=(x-4)^{2}+(y+1)^{2} \\
& x^{2}+4 x+4=x^{2}-8 x+16 \\
& 12 x=12 \\
& x=1 \\
& y=x \tan \theta=x \tan \frac{\pi}{4}=x \\
& \text { When } x=1, y=1 \\
& \text { so the complex number is } 1+i .
\end{aligned}
$$

