Edexcel AS Mathematics Problem solving

Section 1: Solving problems

Solutions to Exercise level 3

1. Let the number of red balls initially be n

Proportion of red balls at first is $\frac{n}{140}$
When 30 red balls are added, proportion of red balls is $\frac{n+30}{170}$
Proportion has doubled, so $\frac{n+30}{170}=2 \times \frac{n}{140}$

$$
\begin{aligned}
& \frac{n+30}{170}=\frac{2 n}{140} \\
& 140(n+30)=2 n \times 170 \\
& 140 n+4200=340 n \\
& 200 n=4200 \\
& n=21
\end{aligned}
$$

There were 21 red balls to begin with.
2. Suppose 45 can be written as the sum of 2 consecutive integers.

Then $n+(n+1)=45$
$2 n+1=45$
$n=22$
so $22+23=45$

Suppose 45 can be written as the sum of 3 consecutive integers
Then $(2 n+1)+(n+2)=45$
$3 n+3=45$
$n=14$
so $14+15+16=45$

Suppose 45 can be written as the sum of 4 consecutive integers
Then $(3 n+3)+(n+3)=45$
$4 n+6=45$
This does not have an integer solution

Suppose 45 can be written as the sum of 5 consecutive integers
Then $(4 n+6)+(n+4)=45$
$5 n+10=45$
$n=7$
so $7+8+9+10+11=45$

Edexcel AS Maths Problem solving

Suppose 45 can be written as the sum of 6 consecutive integers
Then $(5 n+10)+(n+5)=45$

$$
6 n+15=45
$$

$n=5$
so $5+6+7+8+9+10=45$

Suppose 45 can be written as the sum of 7 consecutive integers
Then $(6 n+15)+(n+6)=45$

$$
7 n+21=45
$$

This does not have an integer solution

Suppose 45 can be written as the sum of 8 consecutive integers
Then $(7 n+21)+(n+7)=45$

$$
8 n+28=45
$$

This does not have an integer solution

Suppose 45 can be written as the sum of 9 consecutive integers
Then $(8 n+28)+(n+8)=45$

$$
9 n+36=45
$$

$$
n=1
$$

so $1+2+3+4+5+6+7+8+9=45$

So there are 5 different ways of writing 45 as the sum of consecutive integers.
3. From small triangle, $\tan \theta=\frac{x}{3}$

From large triangle, $\tan \theta=\frac{6}{8}$
so $\frac{x}{3}=\frac{6}{8}$

$8 x=18$

$$
x=2.25
$$

4. Suppose n is a positive integer which leaves a remainder of 11 when divided into 1000.
Then $k n+11=1000$ where k is an integer
so kn $=989$
The only factors of 989 are $1,23,43$ and 989
so 989 can be written as 1×989 or 23×43
n cannot be 1 as $1000 \div 1=1000$ with no remainder
n can be 23, 43 or 989

Edexcel AS Maths Problem solving

so there are three possible positive integers.

