Edexcel AS Maths Exponentials \& logarithms

Section 3: Modelling curves

Solutions to Exercise level 1

1. (i) $s=a t^{c}$

Taking logarithms of both sides: $\log s=\log \left(a t^{c}\right)$

$$
\begin{aligned}
& =\log a+\log t^{c} \\
& =\log a+c \log t
\end{aligned}
$$

(ii) Since $\log a$ and c are constants, the equation $\log s=\log a+c \log t$ is the equation of a straight line, in which the variables are $\log t$ and $\log s$, and which has gradient c and intercept log a. So if the model is appropriate, plotting log s against log twill give an approximate straight line.
(iii)

s	9	13	16	18	20	22
t	5	10	15	20	25	30
$\log s$	0.95	1.11	1.20	1.26	1.30	1.34
$\log t$	0.70	1	1.18	1.30	1.40	1.48

Equation of graph is $\log s=\log a+c \log t$
Gradient $=\frac{0.4}{0.8}=0.5$, so $c=0.5$
intercept $=0.6$, so $\log a=0.6 \Rightarrow a=10^{0.6} \approx 4$.

Edexcel AS Maths Exponentials \& logs Exercise solutions

2. (i) $b=m n^{a}$

$$
\begin{aligned}
\ln b & =\ln \left(m n^{a}\right) \\
& =\ln m+\ln n^{a} \\
& =\ln m+a \ln n
\end{aligned}
$$

(ii) The equation $\ln b=\ln m+a \ln n$ is the equation of a straight line, in which the variables are $\ln b$ and a, and which has gradient $\ln n$ and intercept $\ln m$. So if the model is appropriate, then plotting ln b against a will give an approximate straight line graph.
(iií)

a	0.5	1.0	1.5	2.0	2.5	3.0	3.5
b	4.5	4.0	3.6	3.2	2.9	2.6	2.3
$\ln b$	1.50	1.39	1.28	1.16	1.06	0.96	0.83

Equation of graph is $\ln b=\ln m+a \ln n$
Gradient $=-\frac{0.4}{1.8}=-0.22$, so $\ln n=-0.22 \Rightarrow n=e^{-0.22} \approx 0.8$
intercept $=1.6$, so $\ln m=1.6 \Rightarrow m=e^{1.6} \approx 5$
3. (i)

t minutes	0	3	6	10	14	20
$\theta^{\circ} \mathrm{C}$	60	44.1	30.9	19.9	12.9	6.7
$\log (\theta)$	1.778151	1.644439	1.489958	1.298853	1.11059	0.826075

so the graph of $\log \theta$ against t is:

Edexcel AS Maths Exponentials \& logs Exercise solutions

(ii) The equation of the graph is $\log \theta=-t \log a+\log k$

Gradient $\approx-0.0478=-\log a \Rightarrow a \approx 1.116$
intercept $\approx 1.7803=\log k \Rightarrow k \approx 60.3$
so the law is $\theta \approx 60.3 \times 1.116^{-t}$

