

Section 3: Modelling curves

Solutions to Exercise level 1

1. (i) $s = at^{\circ}$

Taking logarithms of both sides: $\log s = \log(at^{\circ})$

 $= \log a + \log t^{\circ}$ $= \log a + c \log t$

(ii) Since log a and c are constants, the equation $\log s = \log a + c \log t$ is the equation of a straight line, in which the variables are log t and log s, and which has gradient c and intercept log a. So if the model is appropriate, plotting log s against log t will give an approximate straight line.

(ííí)

S	9	13	16	18	20	22
t	5	10	15	20	25	30
log s	0.95	1.11	1.20	1.26	1.30	1.34
log t	0.70	1	1.18	1.30	1.40	1.48

Equation of graph is $\log s = \log a + c \log t$

Gradient = $\frac{0.4}{0.8} = 0.5$, so c = 0.5Intercept = 0.6, so $\log a = 0.6 \implies a = 10^{0.6} \approx 4$.

Edexcel AS Maths Exponentials & logs Exercise solutions

2. (i) $b = mn^{a}$

 $ln b = ln(mn^{a})$ $= ln m + ln n^{a}$ = ln m + a ln n

(ii) The equation $\ln b = \ln m + a \ln n$ is the equation of a straight line, in which the variables are $\ln b$ and a, and which has gradient $\ln n$ and intercept $\ln m$. So if the model is appropriate, then plotting $\ln b$ against a will give an approximate straight line graph.

11	,	,	١.
(ι	L	ı)
٠.	•		/

a	0.5	1.0	1.5	2.0	2.5	3.0	3.5
Ь	4.5	4.0	3.6	3.2	2.9	2.6	2.3
ln b	1.50	1.39	1.28	1.16	1.06	0.96	0.83

Equation of graph is $\ln b = \ln m + a \ln n$ Gradient $= -\frac{0.4}{1.8} = -0.22$, so $\ln n = -0.22 \implies n = e^{-0.22} \approx 0.8$ Intercept = 1.6, so $\ln m = 1.6 \implies m = e^{1.6} \approx 5$

з. (і)

t minutes	0	3	6	10	14	20
θ°C	60	44.1	30.9	19.9	12.9	6.7
log(θ)	1.778151	1.644439	1.489958	1.298853	1.11059	0.826075

so the graph of log θ against t is:

Edexcel AS Maths Exponentials & logs Exercise solutions

(ii) The equation of the graph is $\log \theta = -t \log a + \log k$ Gradient $\approx -0.0478 = -\log a \Rightarrow a \approx 1.116$ Intercept $\approx 1.7803 = \log k \Rightarrow k \approx 60.3$ so the law is $\theta \approx 60.3 \times 1.116^{-t}$