Edexcel AS Mathematics Integration

Section 2: Finding the area under a curve

Solutions to Exercise level 2

1. (i)

$$
\text { (i) } \begin{aligned}
\int_{-2}^{2}(x+3)(x-2) d x & =\int_{-2}^{2}\left(x^{2}+x-6\right) d x \\
& =\left[\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-6 x\right]_{-2}^{2} \\
& =\left(\frac{8}{3}+2-12\right)-\left(-\frac{8}{3}+2+12\right) \\
& =-\frac{56}{3}
\end{aligned}
$$

(ii) $\int_{0}^{2} x\left(x^{2}+1\right) d x=\int_{0}^{3}\left(x^{3}+x\right) d x$

$$
\begin{aligned}
& =\left[\frac{1}{4} x^{4}+\frac{1}{2} x^{2}\right]_{0}^{2} \\
& =(4+2)-(0+0) \\
& =6
\end{aligned}
$$

2. $y=x^{2}-2 x-3=(x-3)(x+1)$

$$
\begin{aligned}
\text { Area above } x \text {-axis } & =\int_{-3}^{-1}\left(x^{2}-2 x-3\right) d x \\
& =\left[\frac{1}{3} x^{3}-x^{2}-3 x\right]_{-3}^{-1} \\
& =\left(-\frac{1}{3}-1+3\right)-(-9-9+9) \\
& =\frac{32}{3} \\
\text { Area below } x \text {-axis } & =\left[\frac{1}{3} x^{3}-x^{2}-3 x\right]_{-1}^{3} \\
& =(9-9-9)-\left(-\frac{1}{3}-1+3\right) \\
& =-9-\frac{5}{3} \\
& =-\frac{32}{3}
\end{aligned}
$$

Total area $=\frac{32}{3}+\frac{32}{3}=\frac{64}{3}$ square units
3. $y=x(x-1)$

The graph cuts the x-axis at the origin and the point $(1,0)$.

This area is negative as it is below the x-axis.

Edexcel AS Maths Integration 2 Exercise solutions

$$
\begin{aligned}
\text { Area below } x \text {-axis } & =\int_{0}^{1} x(x-1) d x \\
& =\int_{0}^{1}\left(x^{2}-x\right) d x \\
& =\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right]_{0}^{1} \\
& =\frac{1}{3}-\frac{1}{23} \\
& =-\frac{1}{6} \\
\text { Area above } x \text {-axis } & =\left[\frac{1}{3} x^{3}-\frac{1}{2} x^{2}\right]_{1}^{2} \\
& =\left(\frac{8}{3}-2\right)-\left(\frac{1}{3}-\frac{1}{2}\right) \\
& =\frac{5}{6}
\end{aligned}
$$

Total area $=\frac{1}{6}+\frac{5}{6}=1$ square unít.
4. (i) $y=x^{3}-x=x\left(x^{2}-1\right)=x(x+1)(x-1)$

(ii) Area $=\int_{1}^{2}\left(x^{3}-x\right) d x$

$$
\begin{aligned}
& =\left[\frac{1}{4} x^{4}-\frac{1}{2} x^{2}\right]_{1}^{2} \\
& =(4-2)-\left(\frac{1}{4}-\frac{1}{2}\right) \\
& =2.25 \text { square units }
\end{aligned}
$$

(íi) Area $=\int_{-1}^{0}\left(x^{3}-x\right) d x$

$$
\begin{aligned}
& =\left[\frac{1}{4} x^{4}-\frac{1}{2} x^{2}\right]_{-1}^{0} \\
& =0-\left(\frac{1}{4}-\frac{1}{2}\right) \\
& =0.25 \text { square uníts }
\end{aligned}
$$

(iv) By symmetry, the area between $x=0$ and $x=1$ is the same as the area between $x=-1$ and $x=0$, only below the x-axis.
so the area between $x=0$ and $x=2$ is given by $2.25+0.25=2.5$ square units.

Edexcel AS Maths Integration 2 Exercise solutions

5. (i)

(ii) $A_{1}=\int_{-2}^{0} x(x+2)(x-3) d x$

$$
\begin{aligned}
& =\int_{-2}^{0} x^{3}-x^{2}-6 x d x \\
& =\left[\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-3 x^{2}\right]_{-2}^{0} \\
& =0-\left(4+\frac{8}{3}-12\right) \\
& =\frac{16}{3}
\end{aligned}
$$

$$
A_{2}=\int_{0}^{3} x(x+2)(x-3) d x
$$

$$
=\left[\frac{1}{4} x^{4}-\frac{1}{3} x^{3}-3 x^{2}\right]_{0}^{3}
$$

$$
=\left(\frac{81}{4}-\frac{27}{3}-27\right)-(0)
$$

$$
=-\frac{63}{4}
$$

Total area $=\frac{16}{3}-\left(-\frac{63}{4}\right)=\frac{253}{12} \approx 21.1$ square units.
6. P is the point given by $4=(x-3)^{2} \Rightarrow x=1$ or 5

$$
\begin{aligned}
\text { SO } P & =(1,4) \\
\text { Area } & =\text { rectangle }+\int_{1}^{3}(x-3)^{2} d x \\
& =4+\int_{1}^{3} x^{2}-6 x+9 d x \\
& =4+\left[\frac{1}{3} x^{3}-3 x^{2}+9 x\right]_{1}^{3} \\
& =4+(9-27+27)-\left(\frac{1}{3}-3+9\right) \\
& =\frac{20}{3} \text { units }^{2}
\end{aligned}
$$

7. $y=x\left(4-x^{2}\right)=x(2-x)(2+x)$ When $y=0, x=0, x=-2$, or $x=2$

$$
\begin{aligned}
A_{1} & =\int_{-2}^{0} 4 x-x^{3} d x \\
& =\left[2 x^{2}-\frac{1}{4} x^{4}\right]_{-2}^{0} \\
& =0-(8-4)=-4 \\
A_{2} & =\int_{0}^{2} 4 x-x^{3} d x \\
& =\left[2 x^{2}-\frac{1}{4} x^{4}\right]_{0}^{2} \\
& =(8-4)-0=4 \\
\text { Area } & =4+4=8
\end{aligned}
$$

