## Section 1: Introduction to integration

## Solutions to Exercise level 3 (Extension)

1. (i) $\frac{d y}{d x}=(x-2)(x+5)=x^{2}+3 x-10$
$\Rightarrow y=\frac{1}{3} x^{3}+\frac{3}{2} x^{2}-10 x+k$
The curve passes through $(0,3)$, so $k=3$
so the equation of the graph is $y=\frac{1}{3} x^{3}+\frac{3}{2} x^{2}-10 x+3$
(ii) As before, $y=\frac{1}{3} x^{3}+\frac{3}{2} x^{2}-10 x+k$

The curve passes through $(1,-2)$, so $\frac{1}{3}+\frac{3}{2}-10+k=-2$

$$
\Rightarrow k=\frac{37}{6}
$$

so the equation of the graph is $y=\frac{1}{3} x^{3}+\frac{3}{2} x^{2}-10 x+\frac{37}{6}$

The two curves in (i) and (ii) have the same shape, and the curve in (ii) is obtained from that in (i) by a translation parallel to the $y$-axis through $\binom{0}{\frac{19}{6}}$.

2. $\frac{d y}{d x}=3 x^{2}+3 x+a \Rightarrow y=x^{3}+\frac{3}{2} x^{2}+a x+c_{1}$

Passes through $(1, a)$ so $a=1+\frac{3}{2}+a+c_{1}$

$$
\Rightarrow c_{1}=-\frac{5}{2}
$$

so graph is $y=x^{3}+\frac{3}{2} x^{2}+a x-\frac{5}{2}$
$\frac{d y}{d x}=3 x^{2}-2 x+1 \Rightarrow y=x^{3}-x^{2}+x+c_{2}$
Passes through $(1, a)$ so $a=1-1+1+c_{2}$

$$
\Rightarrow c_{2}=a-1
$$

so graph is $y=x^{3}-x^{2}+x+a-1$

The graphs also meet at $x=-2$,

## Edexcel AS Maths Integration 1 Exercise solutions

so $-8+\frac{3}{2} \times 4-2 a-\frac{5}{2}=-8-4-2+a-1$
$10.5=3 a$
$a=3.5$
Equations of graphs are $y=x^{3}+\frac{3}{2} x^{2}+\frac{7}{2} x-\frac{5}{2}$
and $y=x^{3}-x^{2}+x+\frac{5}{2}$
3. The turning points are the roots of the gradient function, which is quadratic.
$\frac{d y}{d x}=k(x+1)(x-2)=k\left(x^{2}-x-2\right)$
$y=k\left(\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x\right)+c$
Passes through $(2,1)$ so $1=k\left(\frac{8}{3}-2-4\right)+c \Rightarrow 1=-\frac{10}{3} k+c$
passes through $(-1,-2)$ so $-2=k\left(-\frac{1}{3}-\frac{1}{2}+2\right)+c \Rightarrow-2=\frac{7}{6} k+c$
subtracting gives $3=-\frac{9}{2} k \Rightarrow k=-\frac{2}{3}$

$$
c=1-\frac{20}{9}=-\frac{11}{9}
$$

The equation of the graph is $y=-\frac{2}{3}\left(\frac{1}{3} x^{3}-\frac{1}{2} x^{2}-2 x\right)-\frac{11}{9}$

$$
y=-\frac{2}{9} x^{3}+\frac{1}{3} x^{2}+\frac{4}{3} x-\frac{11}{9}
$$

