

Section 2: Maximum and minimum points

Solutions to Exercise level 1

1. $f(x) = 2x^{2} - 3x + 1$ f'(x) = 4x - 3When f(x) is increasing, f'(x) > 0 $\Rightarrow 4x - 3 > 0$ $\Rightarrow 4x > 3$ $\Rightarrow x > \frac{3}{4}$

2.
$$f(x) = 4 + \mathcal{F}x - 3x^{2}$$

$$f'(x) = \mathcal{F} - 6x$$
When $f(x)$ is decreasing, $f'(x) < 0$

$$\Rightarrow \mathcal{F} - 6x < 0$$

$$\Rightarrow \mathcal{F} < 6x$$

$$\Rightarrow 6x > \mathcal{F}$$

$$\Rightarrow x > \frac{\mathcal{F}}{6}$$

3. The gradient of f(x) starts as negative, becomes zero and then becomes positive. This could be either C or D, but in C the gradient is zero when x = 0, so it must be D.

The gradient of g(x) starts as positive, is zero when x = 0 and then becomes positive. This is graph B.

The gradient of p(x) is a constant positive value. This is graph A.

The gradient of q(x) starts as negative, becomes zero when x = 0, and then becomes positive. This is graph C.

4. (i)
$$y = x^{3} + 6x^{2} + 9x$$

 $\frac{dy}{dx} = 3x^{2} + 12x + 9$

Edexcel AS Maths Differentiation 2 Exercise solutions

(ii)
$$\frac{dy}{dx} = 0$$

 $3x^2 + 12x + 9 = 0$
 $x^2 + 4x + 3 = 0$
 $(x+1)(x+3) = 0$
 $x = -1$ or $x = -3$
When $x = -1$, $y = (-1)^3 + 6(-1)^2 + 9 \times -1 = -1 + 6 - 9 = -4$
When $x = -3$, $y = (-3)^3 + 6(-3)^2 + 9 \times -3 = -27 + 54 - 27 = 0$
The turning points are $(-1, -4)$ and $(-3, 0)$

(ííí)

Х	х<-з	х = -з	-3 < X < -1	x = -1	x > -1
dy	+∨e	0	-ve	0	+∨e
$\frac{d}{dx}$					

The point (-3, 0) is a maximum point. The point(-1, -4) is a minimum point.

(iv)
$$y = x^3 + 6x^2 + 9x$$

= $x(x^2 + 6x + 9)$
= $x(x + 3)^2$

The graph cuts the x-axis at x = 0 and x = -3 (repeated). The graph cuts the y-axis at y = 0.