Section 2: Maximum and minimum points

Solutions to Exercise level 1

1. $f(x)=2 x^{2}-3 x+1$
$f^{\prime}(x)=4 x-3$
When $f(x)$ is increasing, $f^{\prime}(x)>0$

$$
\begin{aligned}
& \Rightarrow 4 x-3>0 \\
& \Rightarrow 4 x>3 \\
& \Rightarrow x>\frac{3}{4}
\end{aligned}
$$

2. $f(x)=4+7 x-3 x^{2}$
$f^{\prime}(x)=7-6 x$
When $f(x)$ is decreasing, $f^{\prime}(x)<0$

$$
\begin{aligned}
& \Rightarrow 7-6 x<0 \\
& \Rightarrow 7<6 x \\
& \Rightarrow 6 x>7 \\
& \Rightarrow x>\frac{7}{6}
\end{aligned}
$$

3. The gradient of $f(x)$ starts as negative, becomes zero and then becomes positive. This could be either C or D, but in C the gradient is zero when $x=0$, so it must be D.

The gradient of $g(x)$ starts as positive, is zero when $x=0$ and then becomes positive. This is graph B.

The gradient of $p(x)$ is a constant positive value. This is graph A.

The gradient of $q(x)$ starts as negative, becomes zero when $x=0$, and then becomes positive. This is graph c.
4. (i) $y=x^{3}+6 x^{2}+9 x$

$$
\frac{d y}{d x}=3 x^{2}+12 x+9
$$

Edexcel AS Maths Differentiation 2 Exercise solutions

(ii) $\frac{d y}{d x}=0$
$3 x^{2}+12 x+9=0$
$x^{2}+4 x+3=0$
$(x+1)(x+3)=0$
$x=-1$ or $x=-3$

When $x=-1, y=(-1)^{3}+6(-1)^{2}+9 x-1=-1+6-9=-4$
When $x=-3, y=(-3)^{3}+6(-3)^{2}+9 x-3=-27+54-27=0$
The turning points are $(-1,-4)$ and $(-3,0)$
(iii)

x	$x<-3$	$x=-3$	$-3<x<-1$	$x=-1$	$x>-1$
$\frac{d y}{d x}$	$+v e$	0	$-v e$	0	$+v e$

The point $(-3,0)$ is a maximum point.
The point $(-1,-4)$ is a minimum point.
(iv)

$$
\begin{aligned}
y & =x^{3}+6 x^{2}+9 x \\
& =x\left(x^{2}+6 x+9\right) \\
& =x(x+3)^{2}
\end{aligned}
$$

The graph cuts the x-axis at $x=0$ and $x=-3$ (repeated).
The graph cuts the y-axis at $y=0$.

