Section 1: Introduction to differentiation

Solutions to Exercise level 3 (Extension)

1. (i) When $y=-x^{2}+5 x-6$ crosses the $x-a x i s$,
$x^{2}-5 x+6=0$
$\Rightarrow(x-2)(x-3)=0$
$\Rightarrow x=2$ or $x=3$
(ii) $\frac{d y}{d x}=-2 x+5$

so at $P(2,0), \frac{d y}{d x}=1$
and at $Q(3,0), \frac{d y}{d x}=-1$
so the tangents at P and Q are perpendicular, and hence $P A B Q$ is a square.
So $A=(2.5,0.5)$ and B is (2.5, -0.5)
(iii) Area $=2 \times$ area of triangle $P A B$

$$
\begin{aligned}
& =2 \times \frac{1}{2} \times 1 \times 0.5 \\
& =0.5
\end{aligned}
$$

2. (i) Equation of line through $(0,2)$ with gradient $-\frac{1}{2}$ is given by $y=-\frac{1}{2} x+2$
(ii) $2-\frac{1}{2} x=\frac{1}{8} x^{2} \Rightarrow x^{2}+4 x-16=0$

$$
\begin{aligned}
& \Rightarrow x=\frac{-4 \pm \sqrt{16+64}}{2} \\
& \Rightarrow x=\frac{-4 \pm \sqrt{80}}{2}=\frac{-4 \pm 4 \sqrt{5}}{2}
\end{aligned}
$$

so x-coordinates of P and Q are $-2+2 \sqrt{5}$ and $-2-2 \sqrt{5}$.
(iii) $\frac{d y}{d x}=\frac{1}{4} x$
so at P, gradient $=\frac{1}{2}(-1+\sqrt{5})$
and at Q, gradient $=\frac{1}{2}(-1-\sqrt{5})$

Edexcel AS Maths Differentiation 1 Exercise solutions

(iv) $m_{p} m_{Q}=\left[\frac{1}{2}(-1+\sqrt{5})\right]\left[\frac{1}{2}(-1-\sqrt{5})\right]$

$$
=\frac{1}{4}(1-5)=-1
$$

sotangents are perpendicular.
(v) $a x+2=\frac{1}{8} x^{2} \Rightarrow x^{2}-8 a x-16=0$

$$
\Rightarrow x=\frac{+8 a \pm \sqrt{64 a^{2}+64}}{2}=4 a \pm 4 \sqrt{a^{2}+1}
$$

so x-coordinates of R and S are $4 a+4 \sqrt{a^{2}+1}$ and $4 a-4 \sqrt{a^{2}+1}$.
(vi) $\frac{d y}{d x}=\frac{1}{4} x$
so at R, gradient is $a+\sqrt{a^{2}+1}$
and at S, gradient is $a-\sqrt{a^{2}+1}$
(Vi)

$$
\begin{aligned}
m_{R} m_{s} & =\left(a+\sqrt{a^{2}+1}\right)\left(a-\sqrt{a^{2}+1}\right) \\
& =a^{2}-\left(a^{2}+1\right) \\
& =-1
\end{aligned}
$$

so the tangents are perpendicular.
(Viii) The equation $y=a x+2$ is the general equation of a straight line through the point $F(0,2)$.

part (Vii) shows by considering all values of a that for any
straight line through F the
tangents at the intersection
points with the curve are always perpendicular.
[This is a particular example of a general result. The point F is the focus of this parabola, and perpendicularity is a general result for the tangents to the curve at the intersections with a line through the focus.?
3. (i) The graphs meet when $x^{2}+x-6=0$

$$
\Rightarrow(x-2)(x+3)=0
$$

SO $P=(2,2)$ and $Q=(-3,7)$
At both of P and Q, the gradient of $y=-x+4$ is -1 .

Edexcel AS Maths Differentiation 1 Exercise solutions

$y=x^{2}-2 \Rightarrow \frac{d y}{d x}=2 x$
so at P, gradient $=4$ and at Q, gradient $=-6$.
(ii) The crossing point with the larger x-coordinate is P $(2,2)$, and the gradients of the graph at P are -1 and 4.
so, from the diagram, the angle between the line and the tangent to the curve is given by

$$
\begin{aligned}
\text { angle } & =\alpha+\beta \\
& =\tan ^{-1}\left(\frac{4}{1}\right)+\tan ^{-1}\left(\frac{-1}{1}\right) \\
& =76.0^{\circ}+45^{\circ} \\
& =121.0^{\circ} \quad \text { (to } 3 \mathrm{~s} . f . \text {) }
\end{aligned}
$$

So acute angle $=59.0^{\circ}$ (3 s.f.)

4. At A, $y=x^{2}-4 x+6$

$$
\Rightarrow \frac{d y}{d x}=2 x-4
$$

so gradient $=-4$
$\Rightarrow \alpha=\tan ^{-1} \frac{1}{4}=14.1^{\circ}$ (3 s.f.)
By symmetry the angle at D is also 14.1° (3 s.f.)

At $B, x=4$
The left-hand curve gives $\frac{d y}{d x}=4-4=4$
For the right-hand curve, $y=\frac{1}{2} x^{2}-6 x+22$

$$
\frac{d y}{d x}=x-6
$$

so gradient $=-2$
$\beta=\tan ^{-1} \frac{1}{2}=26.6^{\circ}$ (3 s.f.)
so vertex B is $\alpha+\beta=40.7^{\circ}$ (3 s.f.)

By symmetry vertex C is also 40.7° (3 s.f.).
(ii) The new curve at point B is
$y=-0.25 x^{3}+0.75 x^{2}+6.938 x-18.5$
and it must meet the old curves at $x=3.5$
and $x=4.5$.
At $x=3.5$, left curve gives $y=4.25$

Edexcel AS Maths Differentiation 1 Exercise solutions

new curve gives $y=-0.25 x^{3}+0.75 x^{2}+6.938 x-18.5$

$$
\approx 4.252
$$

At $x=4.5$, left curve gives $y=5.125$
new curve gives
$y=-0.25 x^{3}+0.75 x^{2}+6.938 x-18.5$

$$
\approx 5.127
$$

so the new curve is a good fit to the original curves at $x=3.5$ and
$x=4.5$.

(iii) For the curves at point B,
left-hand curve $y=(x-2)^{2}+2=x^{2}-4 x+6$

$$
\Rightarrow \frac{d y}{d x}=2 x-4
$$

When $x=3.5$, gradient $=3$
new curve $y=-0.25 x^{3}+0.75 x^{2}+6.938 x-18.5$

$$
\Rightarrow \frac{d y}{d x}=-0.75 x^{2}+1.5 x+6.938
$$

When $x=3.5$, gradient ≈ 3
right-hand curve $y=\frac{1}{2} x^{2}-6 x+22$

$$
\Rightarrow \frac{d y}{d x}=x-6
$$

When $x=4.5$, gradient $=-1.5$
new curve $y=-0.25 x^{3}+0.75 x^{2}+6.938 x-18.5$

$$
\Rightarrow \frac{d y}{d x}=-0.75 x^{2}+1.5 x+6.938
$$

When $x=4.5$, gradient ≈-1.50
so the shape of the new curve fits the gradients of the old curves, so the
computer-controlled machine can cut smoothly.

