Edexcel AS Mathematics Problem solving

Section 2: Notation and proof

Solutions to Exercise level 3

- A number greater than or equal to 100 can be written in the form
 100a+b, where a>0 and 0≤b<100
 100a is divisible by 4, so b divisible by 4 ⇔ 100a+b is divisible by 4
- 2. Let the roots be a and 2a. So the equation can be written as (x - a)(x - 2a) = 0 $\Rightarrow x^2 - 3ax + 2a^2 = 0$ $\Rightarrow p = 3a$ and $q = 2a^2$ $\Rightarrow 9q - 2p^2 = 9 \times 2a^2 - 2 \times (3a)^2 = 0$ For the converse, $9q - 2p^2 = 0 \Rightarrow$ equation is $x^2 - px + \frac{2}{3}p^2 = 0$ $\Rightarrow (x - \frac{1}{3}p)(x - \frac{2}{3}p) = 0$ \Rightarrow roots are $\frac{1}{3}p$ and $\frac{2}{3}p$,

 \Rightarrow one root is twice the other provided $p \neq 0$.

з. з ís príme

5 ís príme

7 ís príme

- $9 = 3 \times 3$ so is the product of two primes
- 11 is prime

13 ís príme

- $15 = 3 \times 5$ so is the product of two primes
- 17 ís príme
- 19 ís príme
- $21 = 3 \times 7$ so is the product of two primes

23 ís príme

 $25 = 5 \times 5$ so is the product of two primes

27 can only be written as 3×9 so it is neither a prime nor a product of two primes

so the statement is disproved

4. If the first digit is a and the second digit is b, then the last digit of $b^2 + a$ must be b.

If b = 1, $b^2 = 1$ so a can only be zero which means it is not a 2 digit number.

- If b = 2, $b^2 = 4$ so a must be 8.82 does not work as $8 + 2^2$ is not 82
- f b = 3, $b^2 = 9$ so a must be 4. 43 does not work as $4 + 3^2$ is not 43
- If b = 4, $b^2 = 16$ so a must be 8. 84 does not work as $8 + 4^2$ is not 84

If b = 5, $b^2 = 25$ so a can only be zero which means it is not a 2 digit number.

13/05/16 © MEI

Edexcel AS Mathematics Problem solving

If b = 6, $b^2 = 36$ so a can only be zero which means it is not a 2 digit number. If b = 7, $b^2 = 49$ so a must be 8. 87 does not work as $8 + 7^2$ is not 87 If b = 8, $b^2 = 64$ so a must be 4. 48 does not work as $4 + 8^2$ is not 48 If b = 9, $b^2 = 81$ so a must be 8. 89 works as $8 + 9^2 = 89$

So the only number is 89.

5. (i)
$$[10b+c]^2 = 100b^2 + 20bc + c^2$$

= $10[10b+2c]b+c^2$

(ii) Any positive integer can be written as 10b + c for some integers b and c, and the expression for the square becomes $10k + c^2$ so the final digit of the square number is determined only by c^2 .

For different values of c, we get

 $1^2 = 1$, $2^2 = 4$, $3^2 = 9$, $4^2 = 10 + 6$, $5^2 = 20 + 5$, $6^2 = 30 + 6$, $7^2 = 40 + 9$, $8^2 = 60 + 4$, $9^2 = 80 + 1$, $0^2 = 0$

So squares end in 1, 4, 5, 6, or 9, and never in 2, 3, 7, or 8.