Edexcel AS Mathematics Problem solving

Section 2: Notation and proof

Solutions to Exercise level 3

1. A number greater than or equal to 100 can be written in the form

$$
100 a+b \text {, where } a>0 \text { and } 0 \leq b<100
$$

$100 a$ is divisible by 4 , so b divisible by $4 \Leftrightarrow 100 a+b$ is divisible by 4
2. Let the roots be a and $2 a$.

So the equation can be written as $(x-a)(x-2 a)=0$

$$
\begin{aligned}
& \Rightarrow x^{2}-3 a x+2 a^{2}=0 \\
& \Rightarrow p=3 a \text { and } q=2 a^{2} \\
& \Rightarrow 9 q-2 p^{2}=9 \times 2 a^{2}-2 \times(3 a)^{2}=0
\end{aligned}
$$

For the converse, $9 q-2 p^{2}=0 \Rightarrow$ equation is $x^{2}-p x+\frac{2}{9} p^{2}=0$

$$
\Rightarrow\left(x-\frac{1}{3} p\right)\left(x-\frac{2}{3} p\right)=0
$$

$$
\Rightarrow \text { roots are } \frac{1}{3} p \text { and } \frac{2}{3} p \text {, }
$$

\Rightarrow one root is twice the other provided $p \neq 0$.
3. 3 is prime

5 is prime
7 is prime
$g=3 \times 3$ so is the product of two primes
11 is prime
13 is prime
$15=3 \times 5$ so is the product of two primes
17 is prime
19 is prime
$21=3 \times 7$ so is the product of two primes
23 is prime
$25=5 \times 5$ so is the product of two primes
27 can only be written as 3×9 so it is neither a prime nor a product of two primes
so the statement is disproved
4. If the first digit is a and the second digit is b, then the last digit of $b_{2}+a$ must be b.
If $b=1, b_{2}=1$ so a can only be zero which means it is not a 2 digit number.
If $b=2, b_{2}=4$ so a must be 8.82 does not work as $8+22$ is not 82
if $b=3, b_{2}=9$ so a must be 4.43 does not work as $4+32$ is not 43
If $b=4, b_{2}=16$ so a must be 8.84 does not work as $8+42$ is not 84
if $b=5, b_{2}=25$ so a can only be zero which means it is not a 2 digit number.

Edexcel AS Mathematics Problem solving

If $b=6, b_{2}=36$ so a can only be zero which means it is not a 2 digit number. if $b=7, b_{2}=49$ so a must be 8.87 does not work as $8+7^{2}$ is not 87 if $b=8, b_{2}=64$ so a must be 4.48 does not work as $4+82$ is not 48 If $b=9, b^{2}=81$ so a must be 8.89 works as $8+9^{2}=89$

So the only number is 89 .
5. (i) $[10 b+c]^{2}=100 b^{2}+20 b c+c^{2}$

$$
=10[10 b+2 c] b+c^{2}
$$

(ii) Any positive integer can be written as $10 b+c$ for some integers b and c, and the expression for the square becomes $10 k+c^{2}$ so the final digit of the square number is determined only by c^{2}.

For different values of c, we get
$1^{2}=1,2^{2}=4,3^{2}=9,4^{2}=10+6,5^{2}=20+5,6^{2}=30+6$, $7^{2}=40+9,8^{2}=60+4,9^{2}=80+1,0^{2}=0$

So squares end in 1, 4, 5, 6, or 9 , and never in 2, 3, 7, or 8 .

