Edexcel AS Mathematics Coordinate geometry "integral

Section 2: Circles

Solutions to Exercise level 3 (Extension)

1. $3^{2}+(\sqrt{27})^{2}=k^{2} \Rightarrow k^{2}=36$

$$
\Rightarrow k=6
$$

In the diagram, $\alpha=60^{\circ}$.
The three points are spaced out equally around the circle, so the angles at the centre are 120°.
So for an equilateral triangle the vertices Q and R are $(3,-\sqrt{27})$ and $(-6,0)$.

2. (i) M is $(6,3)$, and the circle has radius $\sqrt{4^{2}+2^{2}}=\sqrt{20}$.

So the equation is $(x-6)^{2}+(y-3)^{2}=20$

$$
\Rightarrow x^{2}+y^{2}-12 x-6 y+25=0
$$

(ii) $\left.\begin{array}{c}y=3 x-15 \\ x^{2}+y^{2}-12 x-6 y+25=0\end{array}\right\}$
$\Rightarrow x^{2}+(3 x-15)^{2}-12 x-6(3 x-15)+25=0$
$\Rightarrow x^{2}-12 x+34=0$
$\Rightarrow x=\frac{12 \pm \sqrt{144-136}}{2}$

$$
=6 \pm \sqrt{2}
$$

souis (7.41, 7.24) and v is (4.59, -1.24)
$\angle P U Q$ is an angle in a semicircle, so $\angle P U Q=90^{\circ}$
(iii) $\left.\begin{array}{c}y+2 x=5 \\ x^{2}+y^{2}-12 x-6 y+25=0\end{array}\right\}$
$\Rightarrow x^{2}+(-2 x+5)^{2}-12 x-6(-2 x+5)+25=0$
$\Rightarrow x^{2}-4 x+4=0$
$\Rightarrow(x-2)^{2}=0$
$\Rightarrow x=2$ (twice!), $y=1$
So L_{2} is a tangent to the circle at P, and therefore $\angle R P Q=90^{\circ}$.
3. For all the circles passing through P and Q, the line segment $P Q$ is a chord. For each circle, the diameter through the midpoint of $P Q$ is a perpendicular bisector. Therefore all centres lie along this line.

Edexcel AS Maths Coordinate geometry 2 Exercise solutions

Midpoint of $P Q$ is $(3,2)$
Gradient of $P Q=\frac{10}{4}=\frac{5}{2}$
so the gradient of the perpendicular bisector $=-\frac{2}{5}$
So the equation of the line of centres is $y-2=-\frac{2}{5}(x-3)$

$$
\Rightarrow 2 x+5 y=16
$$

4. (i) $(x-5)^{2}+y^{2}=5^{2}$

$$
\Rightarrow x^{2}+y^{2}-10 x=0
$$

(ii) $P Q=\sqrt{15^{2}-5^{2}}$

$$
=\sqrt{200}=10 \sqrt{2} \mathrm{~m}
$$

(iii) Since $Q=(a, b)$

$$
\begin{aligned}
& \text { gradient } C Q=\frac{b}{a-5} \\
& \text { gradient } Q P=\frac{-b}{20-a} \\
& \Rightarrow \frac{-b}{20-a}=-\frac{a-5}{b} \\
& \Rightarrow-b^{2}=(5-a)(20-a) \\
& \Rightarrow-b^{2}=100-25 a+a^{2}
\end{aligned}
$$

But Q lies on the circle, so $a^{2}+b^{2}-10 a=0$

$$
\begin{aligned}
& \Rightarrow a^{2}-10 a=100-25 a+a^{2} \\
& \Rightarrow 15 a=100 \\
& \Rightarrow a=\frac{20}{3} \\
& \Rightarrow b^{2}=\frac{200}{3}-\frac{400}{9}=\frac{200}{9} \\
& \Rightarrow b=\frac{10 \sqrt{2}}{3}
\end{aligned}
$$

SO $Q=\left(\frac{20}{3}, \frac{10 \sqrt{2}}{3}\right)$ and $R=\left(\frac{20}{3},-\frac{10 \sqrt{2}}{3}\right)$
(iv) Shape PQCR is a kite.

$$
\begin{aligned}
\text { Area } & =\frac{1}{2}(Q R)(C P) \\
& =\frac{1}{2}\left(\frac{20 \sqrt{2}}{3}\right)(15) \\
& =50 \sqrt{2} \mathrm{~m}^{2}
\end{aligned}
$$

