Edexcel AS Mathematics Polynomials

Section 1: Polynomial functions and graphs

Solutions to Exercise level 3 (Extension)

1. (i)

e.g. $y=(x+3)(x+1)(x-2)(x-3)(x-5)$ or many others with 5 or fewer points where it crosses the x-axis, and 4 local maxima/minima.
(ii) Putting $-x$ for x in $y=\frac{1}{120} x^{5}-\frac{1}{6} x^{3}+x$
gives $y=\frac{1}{120}(-x)^{5}-\frac{1}{6}(-x)^{3}+(-x)$

$$
=-\left(\frac{1}{120} x^{5}-\frac{1}{6} x^{3}+x\right)
$$

so the graph has half-turn symmetry about o (called an odd graph).
((ií) $\frac{1}{120} x^{5}-\frac{1}{6} x^{3}+x=0$

$$
\Rightarrow \frac{1}{120} x\left(x^{4}-20 x^{2}+120\right)=0
$$

and for the quadratic expression in x^{2}, discriminant $=20^{2}-4 \times 1 \times 120$

$$
=-80
$$

so there are no other intercepts other than $x=0$.
(iv) There is a maximum near $(1.5,1)$ and a minimum near $(3,0.53)$, so from part (ii) there is a minimum near $(-1.5,-1)$ and a maximum near ($-3,-0.53$).
(v)

Edexcel AS Maths Polynomials 1 Exercise solutions

(Vi)

\boldsymbol{x}	$\mathbf{0}$	$\pi / 4$	$\pi / 2$	$3 \pi / 4$	π
$\boldsymbol{y}=\boldsymbol{\operatorname { s i n } \boldsymbol { x }}$	0	0.707	1	0.707	0
$\mathbf{y = f} \mathbf{(x)}$	0	0.707	1.005	0.781	0.524

The polynomial could be a useful approximation for $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$.
2. (i) point A gives $2=4 a+2 b\}$ point B gives $2=9 a+3 b\} \Rightarrow a=-\frac{1}{3}, b=\frac{5}{3}$
sojane's graph is $y=-\frac{1}{3} x^{2}+\frac{5}{3} x$

(ii) Samira's graph

(iii) Mary's new polynomial is $y=-\frac{1}{12} x^{3}+\frac{11}{12} x^{2}-3 x+3$

Edexcel AS Maths Polynomials 1 Exercise solutions

Since jane's and samira's graphs both pass through A, B and C, Mary's cubic polynomial has roots at $x=2,3$, and 6 .

3. (i)

(ii) The estimates are:

date	1600	1500
quadratic	1.375 m	2.475 m
cubic	0.5 m	-0.5 m

Both models give absurd estimates for 1500! And greatly different for 1600.
(iii) If $y=a\left(b+2^{x}\right)$,
then $x=0, y=1 \Rightarrow 1=a(b+1)$
and $x=1, y=1.5 \Rightarrow 1.5=a(b+2)$
Dividing: $\frac{b+2}{b+1}=1.5$

$$
\Rightarrow b=1, a=\frac{1}{2}
$$

so $y=\frac{1}{2}\left(1+2^{x}\right)$ (and the other points fit exactly)
(iv) The predictions for year 2100 are:
quadratic polynomial gives 7.125 míllion
cubic polynomial gives 8.0 million
exponential function gives 8.5 million

Edexcel AS Maths Polynomials 1 Exercise solutions

For completeness, the calculations for all three models are below:

date	1500	1600	1700	1800	1900	2000	2100
x	-2	-1	0	1	2	3	4
y	$? ?$	$? ?$	1.0	1.5	2.5	4.5	$? ?$
quadratic	2.475	1.375	1.025	1.425	2.575	4.475	7.125
cubic	-0.5	0.5	1.0	1.5	2.5	4.5	8.0
exponential	0.625	0.75	1.0	1.5	2.5	4.5	8.5

