Edexcel AS Mathematics Polynomials

Section 1: Polynomial functions and graphs

Solutions to Exercise level 2

1. (i)
$$(3x^2 - x + 2)(2x^2 + 5x - 1)$$

= $3x^2(2x^2 + 5x - 1) - x(2x^2 + 5x - 1) + 2(2x^2 + 5x - 1)$
= $6x^4 + 15x^3 - 3x^2 - 2x^3 - 5x^2 + x + 4x^2 + 10x - 2$
= $6x^4 + 13x^3 - 4x^2 + 11x - 2$

(ii)
$$(2x+3)(x-2)(x^{2}+1) = (2x+3)(x^{3}-2x^{2}+x-2)$$

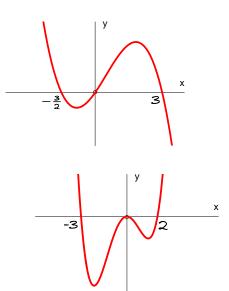
= $2x(x^{3}-2x^{2}+x-2)+3(x^{3}-2x^{2}+x-2)$
= $2x^{4}-4x^{3}+2x^{2}-4x+3x^{3}-6x^{2}+3x-6$
= $2x^{4}-x^{3}-4x^{2}-x-6$

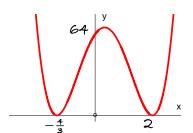
2. (i)
$$y = x(3 - x)(2x + 3)$$

This is a cubic graph which cuts the
x-axis at (0, 0), (3, 0) and $\left(-\frac{3}{2}, 0\right)$.
When $x = 0$, $y = 0$
When x is large and positive, y is negative.
When x is large and negative, y is positive.

(ii) $y = x^{2}(x-2)(x+3)$

This is a quartic graph which touches the x-axis at (0, 0) and cuts the x-axis at (2, 0) and (-3, 0). When x = 0, y = 0


When x is large and positive, y is positive. When x is large and negative, y is positive.


(iii) $y = (x-2)^2(3x+4)^2$

This is a quartic graph which touches the x-axis at (2, 0) and $\left(-\frac{4}{3},0\right)$.

When x = 0, $y = 2^2 \times 4^2 = 64$

when x is large and positive, y is positive. When x is large and negative, y is positive.



Edexcel AS Maths Polynomials 1 Exercise solutions

3. (i)
$$[f(x)]^2 = (x^2 + x + 1)(x^2 + x + 1)$$

 $= x^4 + 2x^3 + 3x^2 + 2x + 1$
(ii) $g(x) - f(x) = 2x^4 - x^3 + 2 - (x^2 + x + 1)$
 $= 2x^4 - x^3 + 2 - x^2 - x - 1$
 $= 2x^4 - x^3 - x^2 - x + 1$

$$(iii) f(x)g(x) = (x^{2} + x + 1) (2x^{4} - x^{3} + 2)$$
$$= 2x^{6} + x^{5} + x^{4} - x^{3} + 2x^{2} + 2x + 2$$

$$(iv) f(x) (g(x) - f(x)) = f(x)g(x) - [f(x)]^{2}$$
$$= (2x^{6} + x^{5} + x^{4} - x^{3} + 2x^{2} + 2x + 2)$$
$$- (x^{4} + 2x^{3} + 3x^{2} + 2x + 1)$$
$$= 2x^{6} + x^{5} - 3x^{3} - x^{2} + 1$$

