

Section 1: Sketching graphs of functions

Solutions to Exercise level 2

1. (í)

$$y = x(x+2)(x-2)$$

-2
1
2
3

(ii)
$$x(x-1)(x-3) = x(x+2)(x-2)$$

 $x(x^{2}-4x+3) = x(x^{2}-4)$
 $x^{3}-4x^{2}+3x = x^{3}-4x$
 $-4x^{2}+7x = 0$
 $4x^{2}-7x = 0$
 $x(4x-7) = 0$
 $x = 0 \text{ or } x = \frac{7}{4}$
When $x = 0, y = 0$
When $x = \frac{7}{4}, y = \frac{7}{4}(\frac{7}{4}-1)(\frac{7}{4}-3) = \frac{7}{4} \times \frac{3}{4} \times -\frac{5}{4} = -\frac{105}{64}$
The coordinates of the points of intersection are (0, 0) and $(\frac{7}{4}, -\frac{105}{64})$.

2. (í)

Edexcel AS Maths Graphs 1 Exercise solutions

(ii)
$$\frac{1}{x} = 2x + 1$$

 $1 = x(2x + 1)$
 $1 = 2x^2 + x$
 $2x^2 + x - 1 = 0$
 $(2x - 1)(x + 1) = 0$
 $x = \frac{1}{2}$ or $x = -1$
When $x = \frac{1}{2}$, $y = 2$
When $x = -1$, $y = -1$
The points of intersection are $(\frac{1}{2}, 2)$ and $(-1, -1)$.

3. (i)
$$\frac{4}{x} = 5 - x$$

$$4 = 5x - x^{2}$$

$$x^{2} - 5x + 4 = 0$$

$$(x - 1)(x - 4) = 0$$

When $x = 1, y = 4$ and when $x = 4, y = 1$
so the points of intersection are $(1, 4)$ and $(4, 1)$.

$$y = \frac{4}{x}$$

$$y = 5 - x$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

$$(1.4)$$

Edexcel AS Maths Graphs 1 Exercise solutions

(iii)
$$\frac{4}{x} = k - x$$

$$4 = kx - x^{2}$$

$$x^{2} - kx + 4 = 0$$

If there are no intersections, discriminant < 0

$$(-k)^{2} - 4 \times 1 \times 4 < 0$$

$$k^{2} - 16 < 0$$

$$k^{2} < 16$$

$$-4 < k < 4$$

4. Let ${\sf F}$ be the force between the particles, and let d be the distance between them.

$$F = \frac{R}{d^2}$$

When $d = 1, F = 90 \Rightarrow 90 = \frac{k}{1}$

so
$$F = \frac{90}{d^2}$$

- (i) When d = 5, $F = \frac{90}{5^2} = 3.6$ so the force is 3.6 N.
- (ii) When F = 2, $2 = \frac{90}{d^2} \Rightarrow d^2 = 45 \Rightarrow d = 6.71$ The distance between them must be at least 6.71 cm (3 s.f.)
- 5. Let \vee be the speed, and let d be the distance travelled. $v = k\sqrt{d}$
 - When $d = 4, v = 10 \implies 10 = k\sqrt{4} \implies k = 5$ $v = 5\sqrt{d}$
 - (i) When d = 30, $v = 5\sqrt{30} = 27.4$ so the speed is 27.4 ms⁻¹ (3 s.f.)
 - (ii) When v = 50, $50 = 5\sqrt{d} \Rightarrow \sqrt{d} = 10 \Rightarrow d = 100$ so it has travelled 100 m.