Section 1: Quadratic graphs and equations

Solutions to Exercise level 3

1. (i) $A=x(x+4)+\frac{1}{2} x(x+2)$

$$
\begin{aligned}
& =x^{2}+4 x+\frac{1}{2} x^{2}+x \\
& =\frac{3}{2} x^{2}+5 x
\end{aligned}
$$

(ii) $P=2(x+4)+x+(x+2)+\sqrt{x^{2}+(x+2)^{2}}$

$$
=4 x+10+\sqrt{x^{2}+(x+2)^{2}}
$$

((ií)

$$
\begin{aligned}
& A=\frac{3}{2} x^{2}+5 x=200 \\
& \Rightarrow 3 x^{2}+10 x-400=0 \\
& \Rightarrow(x-10)(3 x+40)=0 \\
& \Rightarrow x=10 \\
& \Rightarrow P=4 x+10+\sqrt{x^{2}+(x+2)^{2}} \\
&=40+10+\sqrt{100+144} \\
&= 65.6 \mathrm{~m}(3 \mathrm{s.f.})
\end{aligned}
$$

2. If x is the number of seats in the original rows, then $x=\frac{300}{n}$
and in the extension $\left(2+\frac{n}{2}\right)(x-5)=120$
$\Rightarrow \quad(4+n)\left(\frac{300}{n}-5\right)=240$
$\Rightarrow \quad(4+n)(300-5 n)=240 n$
$\Rightarrow 1200+300 n-20 n-5 n^{2}=240 n$
$\Rightarrow \quad 5 n^{2}-40 n-1200=0$
$\Rightarrow \quad(5 n+60)(n-20)=0$
$\Rightarrow \quad n=20$
So there are 20 rows of 15 seats in the first block, and 12 rows of 10 seats in the new extension.

Edexcel AS Maths Quadratics Section 1 Exercise

3. (i) If the width of the enclosure is x, then the length is given by

$$
\text { length }=100-2 x
$$

The area is given by

$$
\begin{aligned}
y & =x(100-2 x) \\
& =-2\left(x^{2}-50 x\right)
\end{aligned}
$$

(ii) So $y=-2\left(x^{2}-50 x\right)$

$$
=-2\left[(x-25)^{2}-625\right]
$$

and for the maximum area, $x=25 \mathrm{~m}$, so the enclosure measures 25 metres wide by 50 metres long, and the area is $1250 \mathrm{~m}^{2}$.
(íí)

At the intercepts on the x-axis, either $x=0$ or $x=50$, and in either case, the 'rectangle' has a zero area.

