Edexcel AS Mathematics Quadratic functions

Section 2: The quadratic formula

Solutions to Exercise level 3

1. The stone passes the clifftop when $h=0$,

$$
\begin{aligned}
h=0 & \Rightarrow 0=20 t-5 t^{2} \\
& \Rightarrow 5 t(t-4)=0 \\
& \Rightarrow t=0, t=4
\end{aligned}
$$

So the stone passes the clifftop on the way downwards after 4 seconds.

The stone reaches the sea when $h=-50$,

$$
\begin{aligned}
h=-50 & \Rightarrow 5 t^{2}-20 t-50=0 \\
& \Rightarrow t^{2}-4 t-10=0 \\
& \Rightarrow t=\frac{4 \pm \sqrt{16+40}}{2} \\
& \Rightarrow t=5.74,-1.74
\end{aligned}
$$

The stone hits the sea after 5.74 seconds (to 3 sig. figs.).

The negative root can be interpreted as the time before the stone was thrown when it should have been thrown from sea level to follow the same path.
2. (i) $x^{2}+8 x+0=(x+4)^{2}+(c-16)$
(ii) If the equation has real roots, then the vertex of the graph must be on or below the x-axis, so $c-16 \leq 0$

$$
\Rightarrow \quad c \leq 16
$$

(iii) If the equation has unequal real roots, then the vertex must be strictly below the x-axis, so $\quad c-16<0$

$$
\Rightarrow \quad 0<16
$$

(iv) Two real equal roots
$c=16$

Two real unequal roots
e.g. $c=14$

Edexcel AS Maths Quadratics 2 Exercise solutions

(v) In the two graphs, the vertex in each case lies on the line $x=-4$ and this will be the case for all values of c. So there will never be a graph with two intercepts with the x-axis which are both positive.
3. (i) In the diagram

$$
\begin{aligned}
2 x+2 y & =184 \\
\Rightarrow \quad y & =92-x
\end{aligned}
$$

By Pythagoras' Theorem,

$$
x^{2}+y^{2}=68^{2}
$$

$\Rightarrow \quad x^{2}+(92-x)^{2}=68^{2}$
$\Rightarrow 2 x^{2}-184 x+3840=0$

$\Rightarrow x^{2}-92 x+1920=0$
$\Rightarrow \quad(x-32)(x-60)=0$
so the car park measures 32 metres by 60 metres.
(ii)

The intersections give both dimensions of the car park.

