

Section 1: The shape of curves

Solutions to Exercise level 2

1. (i) $y = x^{4} - 2x^{3}$ $\frac{dy}{dx} = 4x^{3} - 6x^{2}$ At stationary points, $4x^{3} - 6x^{2} = 0$ $x^{2}(2x - 3) = 0$ $x = 0 \text{ or } x = \frac{3}{2}$ When x = 0, y = 0

When $x = \frac{3}{2}$, $y = \left(\frac{3}{2}\right)^4 - 2\left(\frac{3}{2}\right)^3 = \frac{81}{16} - \frac{27}{4} = -\frac{27}{16}$

X	x< 0	x = 0	$O < \chi < \frac{3}{2}$	$\chi = \frac{3}{2}$	$\chi > \frac{3}{2}$
dy	-Ve	0	-ve	0	+∨e
$\frac{1}{dx}$					

So (0, 0) is a point of inflection, and $\left(\frac{3}{2}, -\frac{27}{16}\right)$ is a minimum point.

(ii)
$$\frac{d^2 y}{dx^2} = 12x^2 - 12x = 12x(x-1)$$
$$\frac{d^2 y}{dx^2} = 0 \text{ at } x = 0 \text{ (the stationary point of inflection) and at } x = 1$$
When $x = 1$, $y = 1-2 = -1$

So (1, -1) is a non-stationary point of inflection

(ííí)

Edexcel A level Maths Differentiation 1 Exercise solns

2. (i)
$$y = 3x^4 - 16x^3 + 30x^2 - 24x + 12$$

$$\Rightarrow \frac{dy}{dx} = 12x^3 - 48x^2 + 60x - 24$$

$$\Rightarrow \frac{d^2y}{dx^2} = 36x^2 - 96x + 60$$

(ii)
$$\frac{dy}{dx} = 0 \implies x^3 - 4x^2 + 5x - 2 = 0$$
$$\implies (x - 1)(x^2 - 3x + 2) = 0$$
$$\implies (x - 1)(x - 1)(x - 2) = 0$$
$$\implies (x - 1)^2(x - 2) = 0$$

so the two points with zero gradient are (1, 5) (twice) and (2, 4).

(iii) Near (1, 5), checking e.g.
$$x = 0.9 \Rightarrow \frac{dy}{dx} \approx -0.1$$

 $x = 1.1 \Rightarrow \frac{dy}{dx} \approx -0.1$

so (1, 5) is a point of inflection.

Near (2, 4), checking e.g. $x = 1.9 \Rightarrow \frac{dy}{dx} \approx -0.97$ $x = 2.1 \Rightarrow \frac{dy}{dx} \approx +1.5$

so (2, 4) is a local minimum.

(iv) The graph crosses the y-axis at (0, 12).

Edexcel A level Maths Differentiation 1 Exercise solns

3. (i)
$$y = (x+1)(x-3)^3$$

 $= (x+1)(x^3 - 9x^2 + 27x - 27)$
 $= x^4 - 9x^3 + 27x^2 - 27x + x^3 - 9x^2 + 27x - 27$
 $= x^4 - 8x^3 + 18x^2 - 27$
(ii) At turning points, $\frac{dy}{dx} = 0$
 $4x^3 - 24x^2 + 36x = 0$
 $x^3 - 6x^2 + 9x = 0$
 $x(x^2 - 6x + 9) = 0$
 $x(x-3)^2 = 0$
 $x = 0 \text{ or } x = 3$
When $x = 0$, $y = (0+1)(0-3)^3 = 1 \times -27 = -27$
When $x = 3$, $y = 0$
The turning points are $(0, -27)$ and $(3, 0)$.
(iii) $\frac{d^2y}{dx^2} = 12x^2 - 48x + 36$
When $x = 0$, $\frac{d^2y}{dx^2} = 36 > 0$, so $(0, -27)$ is a minimum.
When $x = 3$, $\frac{d^2y}{dx^2} = 108 - 144 + 36 = 0$
To left of t.p: when $x = 2$, $\frac{dy}{dx} = 32 - 96 + 72 > 0$
To right of t.p: when $x = 4$, $\frac{dy}{dx} = 256 - 96 + 144 > 0$
so $(3, 0)$ is a point of inflection.
(iv) When $y = 0$, $x = -1$ or $x = 3$

-1

x

3

Edexcel A level Maths Differentiation 1 Exercise solns

4. (i)
$$y = \frac{1}{x} - x^{2} + 3x$$

$$\frac{dy}{dx} = -x^{-2} - 2x + 3$$
At stationary points, $-x^{-2} - 2x + 3 = 0$

$$-1 - 2x^{3} + 3x^{2} = 0$$

$$2x^{3} - 3x^{2} + 1 = 0$$
By inspection $x = 1$ is a root, so $(x - 1)$ is a factor
 $(x - 1)(2x^{2} - x - 1) = 0$
 $(x - 1)(2x + 1)(x - 1) = 0$
Stationary points are at $x = -\frac{1}{2}$ and $x = 1$
When $x = -\frac{1}{2}$, $y = -2 - \frac{1}{4} - \frac{3}{2} = -\frac{45}{4}$
When $x = 1$, $y = 1 - 1 + 3 = 3$

$$\frac{d^{2}y}{dx^{2}} = 2x^{-3} - 2$$
At $x = -\frac{1}{2}$, $\frac{d^{2}y}{dx^{2}} < 0$ so $\left(-\frac{1}{2}, -\frac{45}{4}\right)$ is a local maximum
At $x = 1$, $\frac{d^{2}y}{dx^{2}} = 0$
To the left of $x = 1$, $\frac{dy}{dx} < 0$ and to the right of $x = 1$, $\frac{dy}{dx} < 0$
so $(1, 3)$ is a point of inflection.

5. Since this is a cubic curve with a stationary point of inflection, it must be a transformation of the curve $y = x^3$. Since the coefficient of x^3 is 1, it cannot involve a stretch, so it must be a translation. The origin has been translated to (-1, 3) so the equation of the curve is $y = (x + 1)^3 + 3$

