Section 2: Circular measure

Solutions to Exercise level 2

1.

(i) Area of circle $=\pi \times 10^{2}=314.16 \mathrm{~cm}^{2}$
(ii) Area of triangle $A O B=\frac{1}{2} \times 10 \times 10 \sin 120^{\circ}=43.30$

Total area of tríangle $=3 \times 43.30=129.90 \mathrm{~cm}^{2}$
(iii) Area of segments $=314.16-129.9=184.26 \mathrm{~cm}^{2}$
2.

Arc length $=r \theta$
$9.3=5 \times 2 \theta$
$\theta=0.93$
$d=5 \cos 0.93=2.99 \mathrm{~cm}$
3. (i) $3 \cos x-\sin 2 x=2$
using small angle approximations:

$$
\begin{aligned}
& 3\left(1-\frac{1}{2} x^{2}\right)-2 x=2 \\
& 3-\frac{3}{2} x^{2}-2 x=2 \\
& 3 x^{2}+4 x-2=0 \\
& x=\frac{-4 \pm \sqrt{16-4 \times 3 x-2}}{6}=\frac{-4 \pm \sqrt{40}}{6}
\end{aligned}
$$

smaller root is 0.39
so the smallest positive root is approximately 0.39.

Edexcel A level Maths Trigonometry 2 Exercise solns

(ii) $x \tan x=5 \sin x-\cos x$ using small angle approximations:

$$
\begin{aligned}
& x \times x=5 x-\left(1-\frac{1}{2} x^{2}\right) \\
& x^{2}=5 x-1+\frac{1}{2} x^{2} \\
& x^{2}-10 x+2=0 \\
& x=\frac{10 \pm \sqrt{100-4 \times 2 \times 1}}{2}=\frac{10 \pm \sqrt{92}}{2}
\end{aligned}
$$

smaller root is 0.204
so the smallest positive root is approximately 0.204 .
4.

Angle at A is given by $\sin A=\frac{8}{10} \Rightarrow A=0.927$
Angle in sector of circle at $A=\pi-0.927=2.214$
Area of sector of circle at $A=\frac{1}{2} \times 1^{2} \times 2.214=1.107 \mathrm{~km}^{2}$

Angle at B is given by $\sin B=\frac{6}{10} \Rightarrow B=0.6435$
Angle in sector of circle at $B=\pi-0.6435=2.498$
Area of sector of circle at $B=\frac{1}{2} \times 1^{2} \times 2.498=1.249 \mathrm{~km}^{2}$

Area of quarter circle at $C=\frac{1}{2} \times \pi \times 1^{2}=0.785$

Total area of exclusion zone $=6+8+10+1.107+1.249+0.785$

$$
=27.14 \mathrm{~km}^{2}
$$

5.

Edexcel A level Maths Trigonometry 2 Exercise solns

$r_{4}=10 \cos \frac{\pi}{6}=10 \times \frac{1}{2} \sqrt{3}=5 \sqrt{3}$
Arc length $P Q$ for circle with centre $A=r_{A} \times \frac{\pi}{3}=\frac{5 \sqrt{3} \pi}{3}=9.07 \mathrm{~cm}$
$r_{B}=10 \cos \frac{\pi}{3}=10 \times \frac{1}{2}=5$
Arc length $P Q$ for circle with centre $B=r_{B} \times \frac{2 \pi}{3}=5 \times \frac{2 \pi}{3}=10.47 \mathrm{~cm}$
Total perimeter $=9.07+10.47 \mathrm{~cm}=19.54 \mathrm{~cm}$
6.

Let angle subtended by chord AD be α
$2 \times 6 \sin \frac{1}{2} \alpha=11 \Rightarrow \alpha=2.319$
Let angle subtended by chord $B C$ be β
$2 \times 6 \sin \frac{1}{2} \beta=8 \Rightarrow \beta=1.459$

Length of arc $A D=6 \alpha$
Length of arc $B C=6 \beta$
Length of arcs $A B$ and $C D=6(\alpha-\beta)=5.16$
Perimeter of region $=11+8+5.16=24.16 \mathrm{~cm}$

Area of sector $O A D=\frac{1}{2} \times 6^{2} \alpha=18 \alpha$
Area of triangle $O A D=\frac{1}{2} \times 6^{2} \sin \alpha=18 \sin \alpha$
Area of minor segment bounded by $A D=18(\alpha-\sin \alpha)$
similarly, area of minor segment bounded by $B C=18(\beta-\sin \beta)$
Area of region $A B C D=18(\alpha-\sin \alpha)-18(\beta-\sin \beta)=20.18 \mathrm{~cm}^{2}$

Edexcel A level Maths Trigonometry 2 Exercise solns

7. (i) The arc subtends 40° at the centre.

$$
\begin{aligned}
& 40^{\circ}=40\left(\frac{\pi}{180}\right) \\
&=\frac{2 \pi}{9} \quad(\approx 0.6981) \\
& \Rightarrow 30=r\left(\frac{2 \pi}{9}\right) \\
& \Rightarrow r=\frac{270}{2 \pi} \quad(\approx 42.97)
\end{aligned}
$$

so the roadway curve radius is $\frac{270}{2 \pi} \mathrm{~m}$.
(ii) Area of brickwork $=$ area of sector - area of triangle

$$
\begin{aligned}
& =\frac{1}{2}\left(\frac{270}{2 \pi}\right)^{2}\left(\frac{2 \pi}{9}\right)-2\left(\frac{1}{2}\right)\left(r \sin \frac{\pi}{9}\right)\left(r \cos \frac{\pi}{9}\right) \\
& \approx 51 \mathrm{~m}^{2}
\end{aligned}
$$

