## Edexcel A level Maths Sequences and series

## Section 3: Geometric sequences and series

## Solutions to Exercise level 3

1. (i) scheme $B$ is a geometric sequence, with $a=20$ and $r=1.12$
(ii) $u_{n}=20(1.12)^{n-1}$

$$
\begin{aligned}
S_{n} & =\frac{20\left(1.12^{n}-1\right)}{1.12-1} \\
& =\frac{500}{3}\left(1.12^{n}-1\right)
\end{aligned}
$$

(ií) $S_{n}=3000 \Rightarrow \frac{500}{3}\left(1.12^{n}-1\right)=3000$

$$
\begin{aligned}
& \Rightarrow 1.12^{n}=19 \\
& \Rightarrow n \log (1.12)=\log (19) \\
& \Rightarrow n=\frac{\log (19)}{\log (1.12)}=25.98 \text { (2 d.p.) }
\end{aligned}
$$

so Fred will have fully paid by the end of the $26^{\text {th }}$ month.
(iv) $S_{25}=500\left(1.12^{25}-1\right)=2666.68$ (2 d.p.)
so the payment in month 26 should be 3000-2666.68 $=$ E 333.32
2. (i) consecutive terms of the series have neither a constant difference (except in the case where $x=1$ ) nor a constant ratio - so the series is neither arithmetic or geometric.
(ii)

$$
\begin{aligned}
S_{n} & =1+2 x+3 x^{2}+4 x^{3}+\ldots \ldots \ldots \ldots \ldots+n x^{n-1} \\
x S_{n} & =\quad x+2 x^{2}+3 x^{3}+\ldots \ldots .+(n-1) x^{n-1}+n x^{n} \\
(1-x) S_{n} & =\left(1+x+x^{2}+x^{3}+\ldots \ldots \ldots .\right.
\end{aligned}
$$

The terms in the bracket are a geometric series with $n$ terms
so $(1-x) s_{n}=\frac{1\left(x^{n}-1\right)}{x-1}-n x^{n}$

$$
S_{n}=-\frac{x^{n}-1}{(x-1)^{2}}+\frac{n x^{n}}{(x-1)}
$$

(íii) For series $A$, put $x=2, n=4 \Rightarrow S_{4}=-\frac{2^{4}-1}{(2-1)^{2}}+\frac{4\left(2^{4}\right)}{(2-1)}=49$ and $1+4+12+32=49$
For series $B$, put $x=\frac{1}{2}, n=5 \Rightarrow S_{5}=-\frac{\left(\frac{1}{2}\right)^{5}-1}{\left(\frac{1}{2}-1\right)^{2}}+\frac{5\left(\left(\frac{1}{2}\right)^{5}\right)}{\left(\frac{1}{2}-1\right)}=\frac{57}{16}$
and $1+1+\frac{3}{4}+\frac{1}{2}+\frac{5}{16}=\frac{57}{16}$

## Edexcel A level Maths Series 3 Exercise solutions

3. (i) At the end of the first 3 months, Marika's savings are

$$
\begin{aligned}
d_{3} & =M(1+r)+M(1+r)^{2}+M(1+r)^{3} \\
& =M(1+r)\left\{1+(1+r)+(1+r)^{2}\right\} \\
& =\frac{M(1+r)\left\{(1+r)^{3}-1\right\}}{(1+r)-1} \\
& =\frac{M(1+r)\left\{(1+r)^{3}-1\right\}}{r} \text { as required }
\end{aligned}
$$

(ii) In a similar way, at the end of the first n months, Marika's savings are

$$
\begin{aligned}
d_{n} & =M(1+r)+M(1+r)^{2}+M(1+r)^{3}+\ldots \ldots \ldots .+M(1+r)^{n} \\
& =M(1+r)\left\{1+(1+r)+(1+r)^{2}+\ldots \ldots \ldots+(1+r)^{n-1}\right\} \\
& =\frac{M(1+r)\left\{(1+r)^{n}-1\right\}}{r} \text { as required }
\end{aligned}
$$

(iii) Total to be saved $=15000$, and $r=0.005$

$$
\begin{aligned}
& \Rightarrow 15000=\frac{M(1.005)\left\{(1.005)^{n}-1\right\}}{0.005} \\
& \Rightarrow M=\frac{15000(0.005)}{(1.005)\left\{(1.005)^{n}-1\right\}}=\frac{75}{(1.005)\left[(1.005)^{n}-1\right]}
\end{aligned}
$$

so if Marika saves for 3 years, $n=36$,
and the monthly saving $=$ E379.43
and if Marika saves for 4 years, $n=48$,
and the mouthly saving $=£ 275.86$
(iv)

| Period of <br> payment <br> (months) | Monthly <br> payment |
| :---: | :---: |
| 36 | $£ 379.43$ |
| 37 | $£ 368.23$ |
| 38 | $£ 357.62$ |
| 39 | $£ 347.55$ |
| 40 | $£ 337.99$ |
| 41 | $£ 328.90$ |
| 42 | $£ 320.24$ |
| 43 | $£ 311.99$ |
| 44 | $£ 304.11$ |
| 45 | $£ 296.58$ |
| 46 | $£ 289.39$ |
| 47 | $£ 282.50$ |
| 48 | $£ 275.86$ |

so by saving E300 per month, Marika can buy her car after 44 months.

