Edexcel A level Maths Sequences and series

Section 3: Geometric sequences and series

Solutions to Exercise level 2

1. (i) Common ratio =
$$\frac{4x-4}{5x+1}$$
 and $\frac{3x-5}{4x-4}$

$$\frac{4x-4}{5x+1} = \frac{3x-5}{4x-4}$$

$$(4x-4)^2 = (3x-5)(5x+1)$$

$$16x^2 - 32x + 16 = 15x^2 - 22x - 5$$

$$x^2 - 10x + 21 = 0$$

$$(x-3)(x-7) = 0$$

$$x = 3 \text{ or } x = 7$$

(ii) Common ratio =
$$\frac{4x-4}{5x+1}$$

For $x = 3$, common ratio = $\frac{12-4}{15+1} = 0.5$
For $x = 7$, common ratio = $\frac{28-4}{35+1} = \frac{2}{3}$

2. (i) First term a = 0.45Common ratio r = 0.01

(ii)
$$S_{\infty} = \frac{a}{1-r} = \frac{0.45}{1-0.01} = \frac{0.45}{0.99} = \frac{45}{99} = \frac{5}{11}$$

3.
$$0.\dot{4}\dot{0}\dot{\mathcal{T}} = 0.40\mathcal{T} + 0.00040\mathcal{T} + 0.00000040\mathcal{T} + ...$$

First term $a = 0.40\mathcal{T}$

Common ratio $r = 0.001$

$$S_{\infty} = \frac{a}{1-r} = \frac{0.40\mathcal{T}}{1-0.001} = \frac{0.40\mathcal{T}}{0.999} = \frac{40\mathcal{T}}{999} = \frac{11}{2\mathcal{T}}$$

- 4. Annual salary is a geometric sequence First term a = 18000Common ratio r = 1.04
 - (i) 10^{th} term = $ar^9 = 18000 \times 1.04^9 = £25619.61$ (to nearest penny)

(ii)
$$S_{10} = \frac{a(r^{10} - 1)}{r - 1} = \frac{18000(1.04^{10} - 1)}{1.04 - 1} = £216109.93$$
 (to nearest penny)

Edexcel A level Maths Series 3 Exercise solutions

- 5. Heights rebounded to after each bounce form a geometric sequence After 1 bounce, it rebounds to $2\times0.8=1.6$ metres First term a=1.6 Common ratio r=0.8
 - (i) nth term = $ar^{n-1} = 1.6 \times 0.8^{n-1}$ $1.6 \times 0.8^{n-1} < 0.1$ $0.8^{n-1} < 0.0625$ $\log 0.8^{n-1} < \log 0.0625$ $(n-1)\log 0.8^{n-1} < \log 0.0625$ $n-1 > \frac{\log 0.0625}{\log 0.8}$ n-1 > 12.4n > 13.4
 - It first rebounds to less than 10 cm after 14 bounces.
 - (ii) Total distance travelled = $2 + 2S_{\infty}$ = $2 + 2 \times \frac{a}{1 - r}$ = $2 + \frac{2 \times 1.6}{1 - 0.8}$
 - (iii) Total distance travelled after n bounces = $2 + 2S_n$

$$2+2\times\frac{1.6(1-0.8^{n})}{1-0.8}>0.99\times18$$
$$2+16(1-0.8^{n})>17.82$$

$$0.8^n < 0.01125$$

$$n > \frac{\log 0.01125}{\log 0.8}$$

After 21 bounces.

- 6. (i) a = 1, $r = -\frac{1}{2}$ so $S_{\infty} = \frac{1}{1 - (-\frac{1}{2})} = \frac{2}{3}$
 - (ii) Odd terms $A = 1 + \frac{1}{4} + \frac{1}{16} + ...$

Edexcel A level Maths Series 3 Exercise solutions

So
$$A = 1$$
, $r = \frac{1}{4}$
$$S_{\infty} = \frac{1}{1 - \frac{1}{4}} = \frac{4}{3}$$

(iii) Even terms $B=-\frac{1}{2}-\frac{1}{8}-\frac{1}{32}-...$ so $a=-\frac{1}{2}$, $r=\frac{1}{4}$

$$S_{\infty} = \frac{-\frac{1}{2}}{1 - \frac{1}{4}}$$
$$= -\frac{1}{2} \times \frac{4}{3} = -\frac{2}{3}$$

(iv) For the full series, S = A + B

$$\Rightarrow S_{\infty} = \frac{4}{3} - \frac{2}{3} = \frac{2}{3}$$
 as before