# **Edexcel A level Maths Sequences and series**



### **Section 2: Arithmetic sequence and series**

#### **Solutions to Exercise level 2**

1. (i)  $\neq^{\text{th}} \text{term} = -2 \implies a + 6d = -2 \implies a = -2 - 6d$   $12^{\text{th}} \text{term} = 8 \implies a + 11d = 8$ Substituting first equation into second: -2 - 6d + 11d = 8 5d = 10d = 2

> $a = -2 - 6d = -2 - 6 \times 2 = -14$ The first term is -14 and the common difference is 2.

(ii) 
$$S_n = \frac{1}{2}n[2a + (n-1)d]$$
  
 $364 = \frac{1}{2}n[2 \times -14 + 2(n-1)]$   
 $364 = n(-14 + n - 1)$   
 $364 = n^2 - 15n$   
 $n^2 - 15n - 364 = 0$   
 $(n - 28)(n + 13) = 0$   
Since n must be positive,  $n = 28$ .

2. (i)  $1^{st}$  term  $= 5 \times 1 - 3 = 2$  $2^{nd}$  term  $= 5 \times 2 - 3 = 7$  $3^{rd}$  term  $= 5 \times 3 - 3 = 12$ Common difference = 5.

(ii) 
$$S_n = \frac{1}{2}n[2a + (n-1)d]$$
  
 $S_{20} = \frac{1}{2} \times 20[2 \times 2 + 19 \times 5]$   
 $= 10[4 + 95]$   
 $= 10 \times 99$   
 $= 990$ 

- 3. (i)  $1^{st}$  term  $= S_1 = 4 + 2 = 6$ 
  - (ii)  $S_2 = 4 \times 2 + 2 \times 2^2 = 8 + 8 = 16$   $2^{nd}$  term = 16 - 6 = 10 Common difference = 4.



### **Edexcel A level Maths Sequences 2 Exercise solutions**

(iii) 
$$k^{\text{th}} \text{ term} = a + (k - 1)a'$$
  
=  $6 + 4(k - 1)$   
=  $6 + 4k - 4$   
=  $4k + 2$ 

4. (i) 
$$k^{\text{th}} \text{ term} = 120 - \mathcal{F}(k-1)$$
  
 $120 - \mathcal{F}(k-1) < 0$   
 $120 - \mathcal{F}k + \mathcal{F} < 0$   
 $12\mathcal{F} < \mathcal{F}k$   
 $\mathcal{F}k > 12\mathcal{F}$   
 $k > 18\frac{1}{\mathcal{F}}$   
The 19<sup>th</sup> term is the first term which is negative.

(ii) 
$$S_n = \frac{1}{2}n[2a + (n-1)d']$$
  
 $= \frac{1}{2}n[2 \times 120 - \mathcal{F}(n-1)]$   
 $= \frac{1}{2}n[240 - \mathcal{F}n + \mathcal{F}]$   
 $\frac{1}{2}n(24\mathcal{F} - \mathcal{F}n) < 0$   
Since n is positive,  $24\mathcal{F} - \mathcal{F}n < 0$   
 $24\mathcal{F} < \mathcal{F}n$   
 $\mathcal{F}n > 24\mathcal{F}$   
 $n > 35\frac{2}{\mathcal{F}}$ 

The sum of the first 36 terms is the first negative sum of terms.

5. (i) 
$$a = 10, d = 2$$
  
 $n \text{th term} = 30$   
 $10 + 2(n - 1) = 30$   
 $2(n - 1) = 20$   
 $n - 1 = 10$   
 $n = 11$   
He uses the bike for 30 minutes at the 11<sup>th</sup> session.

(ii) 
$$S_n = \frac{1}{2}n[\text{first term + last term}]$$
  
 $= \frac{1}{2} \times 11[10 + 30]$   
 $= \frac{1}{2} \times 11 \times 40$   
 $= 11 \times 20$   
 $= 220$ 

He has used the bike for a total of 220 minutes.

# **Edexcel A level Maths Sequences 2 Exercise solutions**

6. 
$$s_{20} = \frac{20}{2}(2a + 19d) = 1080$$
  
 $\Rightarrow 2a + 19d = 108$  (1)  
 $s_{30} = \frac{30}{2}(2a + 29d) = 2220$   
 $\Rightarrow 2a + 29d = 148$  (2)  
(2) - (1)  $\Rightarrow 10d = 40$   
 $\Rightarrow d' = 4$   
(1)  $\Rightarrow a = 16$   
so the first terms are 16, 20, 24, 28, 32, .....

7. For A, 
$$s_n = \frac{n}{2}(12 + (n-1)4)$$
  
 $= 4n + 2n^2$   
For B,  $s_n = \frac{n}{2}(50 + (n-1)2)$   
 $= 24n + n^2$   
When totals of series are the same:  
 $4n + 2n^2 = 24n + n^2$   
 $n(n-20) = 0$   
 $n = 0$ , or  $n = 20$   
so the totals are equal after 20 terms, and set

so the totals are equal after 20 terms, and series A total is greater after 21 terms.