

Section 2: Arithmetic sequence and series

Solutions to Exercise level 1

- 1. (í) 2
 - (íí) 5
 - (ííí) -4
- 2. (i) The common difference is 2, and the difference between the first and last terms is 18, so 2 has been added 9 times.
 So there are 10 terms.
 - (íí) The common difference is 5, and the difference between the first and last terms is 195, so 5 has been added 39 times.
 So there are 40 terms.
 - (ííí) The common difference is -4, and the difference between the first and last terms is -40, so -4 has been added 10 times.
 So there are 11 terms.

3. (i)
$$S_n = \frac{1}{2}n$$
 [first term + last term]
= $\frac{1}{2} \times 10[1 + 19]$
= 5×20
= 100

(ii)
$$S_n = \frac{1}{2}n$$
 [first term + last term]
= $\frac{1}{2} \times 40[5 + 200]$
= 20×205
= 4100

(iii)
$$S_n = \frac{1}{2}n$$
 [first term + last term]
 $= \frac{1}{2} \times 11[50 + 10]$
 $= \frac{1}{2} \times 11 \times 60$
 $= 11 \times 30$
 $= 330$

4. First term is -12, common difference is 7. 15^{th} term = -12+14×7=-12+98=86

Edexcel A level Maths Sequences 2 Exercise solutions

5. The first 50 odd numbers form an arithmetic series, with
$$a = 1$$
, $d = 2$, $n = 50$
 $S_n = \frac{1}{2}n[2a + (n - 1)d]$
 $= \frac{1}{2} \times 50[2 \times 1 + 49 \times 2]$
 $= 25[2 + 98]$
 $= 25 \times 100$
 $= 2500$
6. (i) $a = 2$, $d = 4$
 $g^{\text{th}} \text{ term } = a + 7d$
 $= 2 + 7 \times 4$
 $= 2 + 7 \times 4$
 $= 2 + 28$
 $= 30$
(ii) $S_n = \frac{1}{2}n[2a + (n - 1)d]$
 $S_{10} = \frac{1}{2} \times 10[2 \times 2 + 9 \times 4]$
 $= 5[4 + 36]$
 $= 5 \times 40$
 $= 200$
(iii) Last term $= 278$
 $2 + 4(n - 1) = 278$
 $4(n - 1) = 276$
 $n - 1 = 69$
 $n = 70$
There are 70 terms in the sequence.
7. (i) $a = 30$
 $15^{\text{th}} \text{ term } = -12 \Rightarrow 30 + 14d = -12$
 $\Rightarrow 14d = -42$
 $\Rightarrow d = -3$

$$\Rightarrow d = -3$$
(ii) $S_n = \frac{1}{2}n[\text{first term} + \text{last term}]$

$$= \frac{1}{2} \times 15[30 + -12]$$

$$= \frac{1}{2} \times 15 \times 18$$

$$= 15 \times 9$$

$$= 135$$

Edexcel A level Maths Sequences 2 Exercise solutions

8.
$$a = 2, d = 3$$

Last term $= 92 \Rightarrow 2 + 3(n-1) = 92$
 $\Rightarrow 3(n-1) = 90$
 $\Rightarrow n-1 = 30$
 $\Rightarrow n = 31$
 $S_n = \frac{1}{2}n[$ first term + last term]
 $= \frac{1}{2} \times 31[2 + 92]$
 $= \frac{1}{2} \times 31 \times 94$
 $= 31 \times 47$
 $= 1457$

9. (i)
$$u_3 = u_1 + 2d \Longrightarrow d = \mathcal{F}$$

(ii)
$$S_{15} = \frac{15}{2} [2(12) + (15 - 1)(7)] = 915$$

10.
$$d' = -6$$
, so $123 - 6(n - 1) = -57$
 $\Rightarrow 6(n - 1) = 180$
 $\Rightarrow n = 31$
so $s_{31} = \frac{31}{2} [2(123) + (31 - 1)(-6)]$
 $= 1023$

$$[Or: s_{31} = \frac{31}{2}(123 - 57) = 1023]$$