Section 1: Definitions and notation

Solutions to Exercise level 2

1. (i) Terms are of the form $2 k$.

The last term is the $10^{\text {th }}$ term.
The series can be written as $\sum_{1}^{10} 2 k$.
(ii) Terms are of the form k^{2}.

The last term is the $12^{\text {th }}$ term.
The series can be written as $\sum_{1}^{12} k^{2}$.
(iii) Terms are of the form $\frac{1}{k}$.

The last term is the $20^{\text {th }}$ term.
The series can be written as $\sum_{1}^{20} \frac{1}{k}$.
(iv) Terms are of the form $(-2)^{k-1}$.

The last term is the $7^{\text {th }}$ term.
The series can be written as $\sum_{1}^{7}(-2)^{k-1}$.
2. (i) $\sum_{1}^{5}(2 k+1)=3+5+7+9+11=35$
(ii) $\sum_{1}^{4} k^{2}=1+4+9+16=30$
(iii) $\sum_{0}^{4} 2^{k}=1+2+4+8+16=31$
3. (i) $\sum_{1}^{6}\left(2 k^{2}-1\right)=1+7+17+31+49+71$

$$
=176
$$

(ii) $\sum_{1}^{5} r^{2}-\sum_{0}^{3} \frac{r}{r+1}=(1+4+9+16+25)-\left(0+\frac{1}{2}+\frac{2}{3}+\frac{3}{4}\right)$

$$
=53 \frac{1}{12}=\frac{637}{12}
$$

Edexcel A level Maths Sequences 1 Exercise solutions
(iii) $\sum_{0}^{4}(2 k+1)-\sum_{0}^{4}(2 k-1)=(1+3+5+7+9)-(-1+3+5+7+9)$

$$
=10
$$

(iv) $\sum_{1}^{5} r^{2}+\sum_{1}^{5}(2 r+1)=(1+4+9+16+25)+(3+5+7+9+11)$

$$
=90
$$

4. (íil) $\sum_{0}^{4}(2 k+1)-\sum_{0}^{4}(2 k-1)=\sum_{0}^{4}((2 k+1)-(2 k-1))$

$$
\begin{aligned}
& =\sum_{0}^{4} 2 \\
& =2+2+2+2+2 \\
& =10
\end{aligned}
$$

(iv) $\sum_{1}^{5} r^{2}+\sum_{1}^{5}(2 r+1)=\sum_{1}^{5}\left(r^{2}+2 r+1\right)$

$$
\begin{aligned}
& =\sum_{1}^{5}(r+1)^{2} \\
& =4+9+16+25+36 \\
& =90
\end{aligned}
$$

