Section 1: Functions, graphs and transformations

Solutions to Exercise level 3 (Extension)

1. $f(x)=x^{2}-2 x+4=(x-1)^{2}+3$ so there is a vertex at $(1,3)$.

So the minimum value of $f(x)$ is 3 .
The maximum is when $x=-1$
$f(-1)=(-1)^{2}-2 \times-1+4=1+2+4=7$
The range is $3 \leq f(x) \leq 7$.
2. (i) $y=\frac{2 x}{x^{2}+1}$
$y\left(x^{2}+1\right)=2 x$
$y x^{2}-2 x+y=0$
(ii) If there are real roots, $(2)^{2}-4(y)(y) \geq 0$

$$
\begin{aligned}
& 4-4 y^{2} \geq 0 \\
& y^{2} \leq 1 \\
& -1 \leq y \leq 1
\end{aligned}
$$

(iii) Range is $-1 \leq f(x) \leq 1$

By inspection graph goes through $(1,1)$ and $(-1,-1)$.
Also graph goes through origin
For large posítive and negative $x, y \rightarrow 0$

Edexcel A level Maths Functions 1 Exercise solutions

3. $y=2 f(x-4)$
$8=2 f(6-4)$
$4=f(2)$
SO $P=(2,4)$
4. (i) $y=2 x^{2}+6=2\left(x^{2}+3\right)$ so Tis a translation 3 units in the positive y direction, and S is a stretch scale factor 2 in the y-direction.
(ii) $y=\sqrt{4 x+2}=\sqrt{4\left(x+\frac{1}{2}\right)}$ so S is a stretch scale factor $\frac{1}{4}$ in the $x-$ direction (taking $y=\sqrt{x}$ to $y=\sqrt{4 x}$) and Tis a translation of $-\frac{1}{2}$ units in the x-direction.
(iii) $y=\sqrt{4 x}+2=2 \sqrt{x}+2=2(\sqrt{x}+1)$
so T is a translation of 1 unit in the positive y direction, and S is a stretch scale factor 2 in the y direction.
(iv) $y=4 x^{2}-4 x+1=(2 x-1)^{2}=\left(2\left(x-\frac{1}{2}\right)\right)^{2}$
so S is a stretch scale factor $\frac{1}{2}$ in the x-direction and T is a translation of $\frac{1}{2}$ unit in the positive x direction.
