

Section 1: Functions, graphs and transformations

Solutions to Exercise level 3 (Extension)

So the minimum value of f(x) is 3. The maximum is when x = -1 $f(-1) = (-1)^2 - 2 \times -1 + 4 = 1 + 2 + 4 = 7$ The range is $3 \le f(x) \le 7$.

2. (i)
$$y = \frac{2x}{x^2 + 1}$$
$$y(x^2 + 1) = 2x$$
$$yx^2 - 2x + y = 0$$

(ii) If there are real roots, $(2)^2 - 4(y)(y) \ge 0$ $4 - 4y^2 \ge 0$ $y^2 \le 1$ $-1 \le y \le 1$

(iii) Range is $-1 \le f(x) \le 1$

By inspection graph goes through (1, 1) and (-1, -1).

Also graph goes through origin

For large positive and negative x, $y \rightarrow 0$

Edexcel A level Maths Functions 1 Exercise solutions

- 3. y = 2f(x-4) 8 = 2f(6-4) 4 = f(2)so P = (2, 4)
- 4. (i) $y = 2x^2 + 6 = 2(x^2 + 3)$ so \top is a translation 3 units in the positive y direction, and S is a stretch scale factor 2 in the y-direction.
 - (ii) $y = \sqrt{4x+2} = \sqrt{4(x+\frac{1}{2})}$ so S is a stretch scale factor $\frac{1}{4}$ in the xdirection (taking $y = \sqrt{x}$ to $y = \sqrt{4x}$) and \top is a translation of $-\frac{1}{2}$ units in the x-direction.
 - (iii) $y = \sqrt{4x} + 2 = 2\sqrt{x} + 2 = 2(\sqrt{x} + 1)$

so T is a translation of 1 unit in the positive y direction, and S is a stretch scale factor 2 in the y direction.

(iv) $y = 4x^2 - 4x + 1 = (2x - 1)^2 = (2(x - \frac{1}{2}))^2$

so S is a stretch scale factor $\frac{1}{2}$ in the x-direction and T is a translation of $\frac{1}{2}$ unit in the positive x direction.