

Section 1: Functions, graphs and transformations

Solutions to Exercise level 1

- (a) (i) The mapping is one-to-many.
 (ii) The mapping is not a function.
 - (b) (i) The mapping is one-to-one.(ii) The mapping is a function.
 - (c) (í) The mapping is many-to-many.
 (íí) The mapping is not a function.
 - (d) (i) The mapping is many-to-one.
 - (ii) The mapping is a function.

(b)

- (íí) (a) many-to-many (ííí) (a) no
- (b) one-to-one (b) yes

х

3. (i) f(x) = 1 - 3x where x > 0

The range is f(x) < 1.

(ii) $f(x) = x^2$ where $x \in \mathbb{R}$

The range is $f(x) \ge 0$.

Edexcel A level Maths Functions 1 Exercise solutions

- (iii) $f(x) = \frac{1}{1+x^2}$ where $-1 \le x \le 1$ The largest possible value of f(x) is when x = 0, where f(x) = 1. The smallest possible value of f(x) is when $x = \pm 1$, where $f(x) = \frac{1}{2}$. The range is $\frac{1}{2} \le f(x) \le 1$.
- 4. (i) $f(x) \in \mathbb{Q}^+, f(x) \ge 3$
 - (ii) $f(x) \in \mathbb{R}, -9 \le f(x) < 21$
 - (iii) $f(x) \in \mathbb{R}, -1 \leq f(x) < 1$
 - (iv) $f(x) \in \mathbb{R}, f(x) > 0$
 - (v) $f(x) \in \mathbb{R}$
 - (vi) $f(x) \in \mathbb{R}, f(x) \ge 0$
- 5. (i) y = f(x+2)

This graph is obtained from the graph of y = f(x) by a translation of 2 units to the left. The turning point is (-1, 2).

(ii) y = f(3x)

This graph is obtained from the graph of y = f(x) by a stretch, scale factor $\frac{1}{3}$ parallel to the x-axis. The turning point is $(\frac{1}{3}, 2)$.

(iii)
$$y = f(x-1) + 2$$

This graph is obtained from the graph of $y = f(x)$ by a translation
through $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$. The turning point is (2, 4).

 $(iv) \quad y = f(-x)$

This graph is obtained from the graph of y = f(x) by a reflection in the y-axis. The turning point is (-1, 2).

(v) y = -2f(x)

This graph is obtained from the graph of y = f(x) by a reflection in the x-axis and a stretch scale factor 2 parallel to the y-axis. The turning point is (1, -4).

 $(\sqrt{i}) \ y = f(\frac{1}{2}x - 1)$

This graph is obtained from the graph of y = f(x) by a translation of 1 unit to the right followed by a stretch, scale factor 2, parallel to the x-axis. The turning point is (4, 2).

Edexcel A level Maths Functions 1 Exercise solutions

- 6. (i) A translation through $\begin{pmatrix} 3 \\ -1 \end{pmatrix}$ maps the graph of y = f(x) to the graph of y = f(x 3) 1. So the graph of $y = x^2$ is mapped to the graph of $y = (x - 3)^2 - 1$ $= x^2 - 6x + 9 - 1$ $= x^2 - 6x + 8$
 - (ii) A stretch parallel to the x-axis, scale factor ¹/₂ maps the graph of y = f(x) to the graph of y = f(2x).
 So the graph of y = x² is mapped to the graph of y = (2x)² = 4x²
 - (iii) A reflection in the y-axis maps the graph of y = f(x) to the graph of y = f(-x). So the graph of $y = x^2$ is mapped to the graph of $y = (-x)^2 = x^2$
 - (iv) A stretch parallel to the y-axis, scale factor 3 maps the graph of y = f(x) to the graph of y = 3f(x). So the graph of $y = x^2$ is mapped to the graph of $y = 3x^2$
 - (v) A translation through $\begin{pmatrix} -2 \\ 0 \end{pmatrix}$ maps the graph of y = f(x) to the graph of y = f(x + 2). So the graph of $y = x^2$ is mapped to the graph of $y = (x + 2)^2$ A reflection in the x-axis maps the graph of y = f(x) to the graph of y = -f(x). So the graph of $y = (x + 2)^2$ is mapped to the graph of $y = -(x + 2)^2$ $= -(x^2 + 4x + 4)$

 $=-x^{2}-4x-4$

Edexcel A level Maths Functions 1 Exercise solutions

(ví) A stretch parallel to the y-axis, scale factor 2 maps the graph of y = f(x) to the graph of y = 2f(x). So the graph of $y = x^2$ is mapped to the graph of $y = 2x^2$.

A translation through $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$ maps the graph of y = f(x) to the graph of y = f(x - 1) + 2. So the graph of $y = 2x^2$ is mapped to the graph of $y = 2(x - 1)^2 + 2$ A reflection in the y-axis maps the graph of y = f(x) to the graph of y = f(-x). So the graph of $y = 2(x - 1)^2 + 2$ is mapped to the graph of $y = 2(-x - 1)^2 + 2$ $= 2(x^2 + 2x + 1) + 2$ $= 2x^2 + 4x + 2 + 2$ $= 2x^2 + 4x + 4$