Section 1: Functions, graphs and transformations

Solutions to Exercise level 1

1. (a) (i) The mapping is one-to-many.
(ii) The mapping is not a function.
(b) (i) The mapping is one-to-one.
(ii) The mapping is a function.
(c) (i) The mapping is many-to-many.
(ii) The mapping is not a function.
(d) (i) The mapping is many-to-one.
(ii) The mapping is a function.
2. (i) (a)

(ii) (a) many-to-many
(iii) (a) no
(b)

(b) one-to-one
(b) yes
(c)

(c) one-to-many
(c) $n o$
3. (i) $f(x)=1-3 x$ where $x>0$

The range is $f(x)<1$.
(ii) $f(x)=x^{2}$ where $x \in \mathbb{R}$

The range is $f(x) \geq 0$.

Edexcel A level Maths Functions 1 Exercise solutions

(iii) $f(x)=\frac{1}{1+x^{2}}$ where $-1 \leq x \leq 1$

The largest possible value of $f(x)$ is when $x=0$, where $f(x)=1$.
The smallest possible value of $f(x)$ is when $x= \pm 1$, where $f(x)=\frac{1}{2}$.
The range is $\frac{1}{2} \leq f(x) \leq 1$.
4. (i) $f(x) \in \mathbb{Q}^{+}, f(x) \geq 3$
(ii) $f(x) \in \mathbb{R},-g \leq f(x)<21$
(iii) $f(x) \in \mathbb{R},-1 \leq f(x)<1$
(iv) $f(x) \in \mathbb{R}, f(x)>0$
(v) $f(x) \in \mathbb{R}$
(vi) $f(x) \in \mathbb{R}, f(x) \geq 0$
5. (i) $y=f(x+2)$

This graph is obtained from the graph of $y=f(x)$ by a translation of 2 units to the left. The turning point is $(-1,2)$.

(ii) $y=f(3 x)$

This graph is obtainestfrom the graph of $y=f(x)$ by a stretch, scale factor $\frac{1}{3}$ parallel to the x-axis. The turning point is $\left(\frac{1}{3}, 2\right)$.

(iii) $y=f(x-1)+2$

This graph is obtained from the graph of $y=f(x)$ by a translation through $\binom{1}{2}$. The turning point is $(2,4)$.

Edexcel A level Maths Functions 1 Exercise solutions

(iv) $y=f(-x)$

This graph is obtained from the graph of $y=f(x)$ by a reflection in the y-axis. The turning point is $(-1,2)$.

(v) $y=-2 f(x)$

This graph is obtained from the graph of $y=f(x)$ by a reflection in the x-axis and a stretch scale factor 2 parallel to the y-axis. The turning point is $(1,-4)$.

(Vi) $y=f\left(\frac{1}{2} x-1\right)$

This graph is obtained from the graph of $y=f(x)$ by a translation of 1 unit to the right followed by a stretch, scale factor 2 , parallel to the x-axis. The turning point is $(4,2)$.

Edexcel A level Maths Functions 1 Exercise solutions

6. (i) A translation through $\binom{3}{-1}$ maps the graph of $y=f(x)$ to the graph of $y=f(x-3)-1$
So the graph of $y=x^{2}$ is mapped to the graph of

$$
\begin{aligned}
y & =(x-3)^{2}-1 \\
& =x^{2}-6 x+9-1 \\
& =x^{2}-6 x+8
\end{aligned}
$$

(ii) A stretch parallel to the x-axis, scale factor $\frac{1}{2}$ maps the graph of $y=f(x)$ to the graph of $y=f(2 x)$.
so the graph of $y=x^{2}$ is mapped to the graph of

$$
y=(2 x)^{2}=4 x^{2}
$$

(iii) A reflection in the y-axis maps the graph of $y=f(x)$ to the graph of $y=f(-x)$.
So the graph of $y=x^{2}$ is mapped to the graph of

$$
y=(-x)^{2}=x^{2}
$$

(iv) A stretch parallel to the y-axis, scale factor 3 maps the graph of $y=f(x)$ to the graph of $y=3 f(x)$.
so the graph of $y=x^{2}$ is mapped to the graph of $y=3 x^{2}$
(v) A translation through $\binom{-2}{0}$ maps the graph of $y=f(x)$ to the graph of $y=f(x+2)$. So the graph of $y=x^{2}$ is mapped to the graph of

$$
y=(x+2)^{2}
$$

A reflection in the x-axis maps the graph of $y=f(x)$ to the graph of $y=-f(x)$. So the graph of $y=(x+2)^{2}$ is mapped to the graph of

$$
\begin{aligned}
y & =-(x+2)^{2} \\
& =-\left(x^{2}+4 x+4\right) \\
& =-x^{2}-4 x-4
\end{aligned}
$$

Edexcel A level Maths Functions 1 Exercise solutions

(vi) A stretch parallel to the y-axis, scale factor 2 maps the graph of $y=f(x)$ to the graph of $y=2 f(x)$. So the graph of $y=x^{2}$ is mapped to the graph of $y=2 x^{2}$.
A translation through $\binom{1}{2}$ maps the graph of $y=f(x)$ to the graph of $y=f(x-1)+2$. So the graph of $y=2 x^{2}$ is mapped to the graph of $y=2(x-1)^{2}+2$
A reflection in the y-axis maps the graph of $y=f(x)$ to the graph of $y=f(-x)$. So the graph of $y=2(x-1)^{2}+2$ is mapped to the graph of

$$
\begin{aligned}
y & =2(-x-1)^{2}+2 \\
& =2\left(x^{2}+2 x+1\right)+2 \\
& =2 x^{2}+4 x+2+2 \\
& =2 x^{2}+4 x+4
\end{aligned}
$$

