Edexcel A level Mathematics Proof

Section 1: Methods of proof

Solutions to Exercise level 2

1. (i) a and bare both positive $\Rightarrow|a+b|=|a|+|b|$
(ii) a and bare both negative $\Rightarrow|a+b|=|a|+|b|$
(iii) a is positive, b is negative and $|a|>|b| \Rightarrow|a+b|<|a|$

$$
\Rightarrow|a+b|<|a|+|b|
$$

(iv) a is positive, b is negative and $|a|<|b| \Rightarrow|a+b|<|b|$

$$
\Rightarrow|a+b|<|a|+|b|
$$

(v) a is negative, bis positive and $|a|>|b| \Rightarrow|a+b|<|a|$

$$
\Rightarrow|a+b|<|a|+|b|
$$

(Vi) a is negative, bis positive and $|a|<|b| \Rightarrow|a+b|<|b|$

$$
\Rightarrow|a+b|<|a|+|b|
$$

so $|a+b| \leq|a|+|b|$ in all cases.
2. (i) $10^{3 n}+1=\left(10^{n}+1\right)\left(10^{2 n}-10^{n}+1\right)$
(ii) $10^{n}+1>1$ for all integer values of n greater than 0 , since $10^{n}>0$ for all integer values greater than 0 .
$10^{2 n}-10^{n}+1=10^{n}\left(10^{n}-1\right)+1$
Since $10^{n} \geq 10$ for all integer values of n greater than 0 , then
$10^{n}\left(10^{n}-1\right)+1>1$ for all integer values of n greater than 0 .
Therefore $10^{3 n}+1$ may be written as the product of two factors, which are both integers greater than 1 , so it is not a prime number.
3. (i) Assume that there is a rational number $\frac{p}{q}$ in its lowest terms, with $p, q \neq 0$, which satisfies the equation.
Then $x^{3}+x+1=0 \Rightarrow \frac{p^{3}}{q^{3}}+\frac{p}{q}+1=0$

$$
\Rightarrow p^{3}+p q^{2}+q^{3}=0
$$

(ii) (a) If p and q are both odd: p^{3} is odd, $p q^{2}$ is odd and q^{3} is odd,
so $p^{3}+p q^{2}+q^{3}$ is the sum of three odd numbers and is therefore odd.
(b) If p is even and q is odd:
p^{3} is even, $p q^{2}$ is even and q^{3} is odd,

Edexcel A level Maths Proof 1 Exercise solutions

so $p^{3}+p q^{2}+q^{3}$ is the sum of two even and one odd number and is therefore odd.
(c) If p is odd and qis even:
p^{3} is odd, $p q^{2}$ is even and q^{3} is even, so $p^{3}+p q^{2}+q^{3}$ is the sum of two even and one odd number and is therefore odd.

So in each of these cases the left-hand side of the equation is odd and therefore cannot be zero.
(iii) If p and q are both even then 2 is a common factor of both p and q, so $\frac{P}{q}$ is not a fraction in its lowest terms. This contradicts the assumption in (i).
4. Assume that there is a rational number $\frac{P}{q}$ in its lowest terms, with $p, q \neq 0$, which satisfies the equation.
Then $x^{5}+x^{4}+x^{3}+x^{2}+1=0 \Rightarrow \frac{p^{5}}{q^{5}}+\frac{p^{4}}{q^{4}}+\frac{p^{3}}{q^{3}}+\frac{p^{2}}{q^{2}}+1=0$

$$
\Rightarrow p^{5}+p^{4} q+p^{3} q^{2}+p^{2} q^{3}+q^{5}=0
$$

If p and q are both odd:
p^{5} is odd, $p^{4} q$ is odd, $p^{3} q^{2}$ is odd, $p^{2} q^{3}$ is odd and q^{5} is odd,
so $p^{5}+p^{4} q+p^{3} q^{2}+p^{2} q^{3}+q^{5}$ is the sum of five odd numbers and is therefore odd.
If p is even and q is odd:
p^{5} is even, $p^{4} q$ is even, $p^{3} q^{2}$ is even, $p^{2} q^{3}$ is even and q^{5} is odd,
so $p^{5}+p^{4} q+p^{3} q^{2}+p^{2} q^{3}+q^{5}$ is the sum of four even and one odd
number and is therefore odd.
If p is odd and q is even:
p^{5} is odd, $p^{4} q$ is even, $p^{3} q^{2}$ is even, $p^{2} q^{3}$ is even and q^{5} is even,
so $p^{5}+p^{4} q+p^{3} q^{2}+p^{2} q^{3}+q^{5}$ is the sum of four even and one odd number and is therefore odd.
So in each of these cases the left-hand side of the equation is odd and therefore cannot be zero.

If p and q are both even then 2 is a common factor of both p and q, so $\frac{P}{q}$ is not a fraction in its lowest terms. This contradicts the original assumption.

Edexcel A level Maths Proof 1 Exercise solutions

5. (i) $n(n-1)(n+1)\left(n^{2}+n+1\right)\left(n^{2}-n+1\right)$
$=n(n-1)(n+1)\left(\left(n^{2}+1\right)+n\right)\left(\left(n^{2}+1\right)-n\right)$
$=n\left(n^{2}-1\right)\left(\left(n^{2}+1\right)^{2}-n^{2}\right)$
$=n\left(n^{2}-1\right)\left(n^{4}+2 n^{2}+1-n^{2}\right)$
$=n\left(n^{2}-1\right)\left(n^{4}+n^{2}+1\right)$
$=n\left(n^{6}-n^{4}+n^{4}-n^{2}+n^{2}-1\right)$
$=n^{7}-n$
(ii) If $n=7 x$ where x is a positive integer then n is clearly divisible by 7 .

If $n=7 x+1$ where x is a positive integer
then $n-1=7 x+1-1=7 x$ which is divisible by 7 .
If $n=7 x+2$ where x is a positive integer
then $n^{2}+n+1=(7 x+2)^{2}+7 x+2+1$

$$
\begin{aligned}
& =49 x^{2}+35 x+7 \\
& =7\left(7 x^{2}+5 x+1\right)
\end{aligned}
$$

which is divisible by 7 .
If $n=7 x+3$ where x is a positive integer
then $n^{2}-n+1=(7 x+3)^{2}-7 x-3+1$

$$
\begin{aligned}
& =49 x^{2}+35 x+7 \\
& =7\left(7 x^{2}+5 x+1\right)
\end{aligned}
$$

which is divisible by 7 .
If $n=7 x+4$ where x is a positive integer
then $n^{2}+n+1=(7 x+4)^{2}+7 x+4+1$

$$
\begin{aligned}
& =49 x^{2}+63 x+21 \\
& =7\left(7 x^{2}+9 x+3\right)
\end{aligned}
$$

which is divisible by 7 .
If $n=7 x+5$ where x is a positive integer
then $n^{2}-n+1=(7 x+5)^{2}-7 x-5+1$

$$
\begin{aligned}
& =49 x^{2}+63 x+21 \\
& =7\left(7 x^{2}+9 x+3\right)
\end{aligned}
$$

which is divisible by 7 .
If $n=7 x+6$ where x is a positive integer
then $n+1=7 x+6+1=7 x+7=7(x+1)$
which is divisible by 7 .

