Edexcel A level Mathematics Proof

Section 1: Methods of proof

Solutions to Exercise level 1

1. (i) True
using direct proof:
a is a factor of $b \Rightarrow m a=b$ for some integer m
a is a factor of $c \Rightarrow n a=c$ for some integer n
$b+c=m a+n a=(m+n) a$
since $m+n$ is an integer, a is a factor of $b+c$.
(ii) True
using proof by exhaustion:
2 is not a factor of 103
3 is not a factor of 103
5 is not a factor of 103
7 is not a factor of 103
11 is not a factor of 103
since $11>\sqrt{103}$, there can be no other prime factors of 103 , and therefore 103 has no factors other than itself and 1.
103 is therefore a prime number.
(iii) False
$n=4$ is a counter-example, since for $n=4, n^{2}+n+1=21$, which is not prime.
(iv) True
using direct proof:
$(a-b)^{2} \geq 0 \quad$ for all real numbers a and b
$\Rightarrow a^{2}-2 a b+b^{2} \geq 0$
$\Rightarrow a^{2}+b^{2} \geq 2 a b$
(v) True
using proof by contradiction:
Assume that the cube root of 2 is rational, i.e. $\sqrt[3]{2}=\frac{a}{b}$ for integers a and b, where a and b have no common factor.

$$
\begin{aligned}
& \Rightarrow 2=\frac{a^{3}}{b^{3}} \\
& \Rightarrow a^{3}=2 b^{3}
\end{aligned}
$$

Since $2 b^{3}$ is even, as is even, so a is even and can therefore be written as $a=2 p$.

Edexcel A level Maths Proof 1 Exercise solutions

$$
\begin{aligned}
a^{3}=2 b^{3} & \Rightarrow(2 p)^{3}=2 b^{3} \\
& \Rightarrow 8 p^{3}=2 b^{3} \\
& \Rightarrow 4 p^{3}=b^{3}
\end{aligned}
$$

since $4 p^{3}$ is even, b_{3} is even, so b is even.
Therefore a and b are both even, so they have a common factor of 2 , contradicting the original assumption.
Therefore the cube root of 2 is irrational.
2. (i) ais a rational number $\Rightarrow a=\frac{m}{n}$ for some integers m and n. b is a rational number $\Rightarrow b=\frac{p}{q}$ for some integers p and q. $a+b=\frac{m}{n}+\frac{p}{q}=\frac{m q+n p}{n q}$
since $m q+n p$ and $n q$ are both integers, $a+b$ is a rational number.
(ii) For example, $a=\sqrt{2}, b=1-\sqrt{2}$, so $a+b=1$. so $a+b$ is a rational number but a and b are not.
(iii) Assume that ais rational, bis irrational and $a+b$ is rational. since ais rational, it may be written as $\frac{m}{n}$, where m and n are integers with no common factor.
since $a+b$ is rational, it may be written as $\frac{p}{q}$, where p and q are integers with no common factor.
$\frac{m}{n}+b=\frac{p}{q}$
$b=\frac{p}{q}-\frac{m}{n}=\frac{n p-m q}{n q}$
Since up - mq and $n q$ are both integers, b is rational, contradicting the original assumption.
So if a is rational and b is irrational, $a+b$ is irrational.
3.

Edexcel A level Maths Proof 1 Exercise solutions

(i) Let angle $A C D$ be θ. Then angle $C A D=90^{\circ}-\theta$.

Also angle $B C D=90^{\circ}-\theta$, so angle $C B D=\theta$.
Triangles $A D C$ and $A C D$ both have angles of $90^{\circ}, \theta$ and $90^{\circ}-\theta$

$$
\frac{c-x}{b}=\frac{b}{c}
$$

(ii) Triangles $B D C$ and $B C A$ both have angles of $90^{\circ}, \theta$ and $90^{\circ}-\theta$

$$
\frac{x}{a}=\frac{a}{c}
$$

(iii) From (ii), $x=\frac{a^{2}}{c}$
substituting into the relationship from (i):

$$
\begin{aligned}
& c\left(c-\frac{a^{2}}{c}\right)=b^{2} \\
& \Rightarrow c^{2}-a^{2}=b^{2} \\
& \Rightarrow a^{2}+b^{2}=c^{2}
\end{aligned}
$$

This is a proof of Pythagoras' theorem.
4. (i) $x^{2}-y^{2}=1$

$$
(x+y)(x-y)=1
$$

(ii) Assume that a solution (x, y) exists where x and y are positive integers.
(iii) If a solution exists, then
either $x+y=1$ and $x-y=1$ or $x+y=-1$ and $x-y=-1$
(iv) In the first case: $x+y=1$

$$
\begin{aligned}
& \frac{x-y=1}{2 x=2} \\
& x=1, y=0
\end{aligned}
$$

In the second case: $\quad x+y=-1$

$$
\begin{aligned}
& \frac{x-y=-1}{2 x=-2} \\
& x=-1, y=0
\end{aligned}
$$

This contradicts the original assumption that both x and y are positive integers. So there is no solution where x and y are positive integers.

Edexcel A level Maths Proof 1 Exercise solutions
5. $x^{2}-y^{2}=10$
$(x+y)(x-y)=10$

Assume that a solution (x, y) exists where x and y are positive integers.
If a solution exists, then

$$
\begin{aligned}
& \text { either } x+y=2 \text { and } x-y=5 \\
& \text { or } x+y=-2 \text { and } x-y=-5 \\
& \text { or } x+y=5 \text { and } x-y=2 \\
& \text { or } x+y=-5 \text { and } x-y=-2
\end{aligned}
$$

In the first case: $x+y=2$

$$
\frac{x-y=5}{2 x=7}
$$

$$
x=3.5, y=-1.5
$$

In the second case:

$$
\begin{aligned}
& x+y=-2 \\
& \frac{x-y=-5}{2 x=-7} \\
& x=-3.5, y=1.5
\end{aligned}
$$

In the third case: $x+y=5$

$$
\begin{aligned}
& \frac{x-y=2}{2 x=7} \\
& x=3.5, y=1.5
\end{aligned}
$$

In the fourth case: $x+y=-5$

$$
\begin{aligned}
& \frac{x-y=-2}{2 x=-7} \\
& x=-3.5, y=-1.5
\end{aligned}
$$

This contradicts the original assumption that both x and y are positive integers. So there is no solution where x and y are positive integers.

