Section 2: Rational expressions

Solutions to Exercise level 2

1. (i) $\frac{2}{x+3}+\frac{1}{x-5}=\frac{2(x-5)}{(x+3)(x-5)}+\frac{x+3}{(x+3)(x-5)}$

$$
\begin{aligned}
& =\frac{2 x-10+x+3}{(x+3)(x-5)} \\
& =\frac{3 x-7}{(x+3)(x-5)}
\end{aligned}
$$

(ii) $\frac{5}{2 x-3}-\frac{2}{4 x+1}=\frac{5(4 x+1)}{(2 x-3)(4 x+1)}-\frac{2(2 x-3)}{(2 x-3)(4 x+1)}$

$$
\begin{aligned}
& =\frac{20 x+5-4 x+6}{(2 x-3)(4 x+1)} \\
& =\frac{16 x+11}{(2 x-3)(4 x+1)}
\end{aligned}
$$

(iii) $t-\frac{5}{3 t-1}=\frac{t(3 t-1)}{3 t-1}-\frac{5}{3 t-1}$

$$
=\frac{3 t^{2}-t-5}{3 t-1}
$$

2. (i)

$$
\begin{aligned}
\frac{1}{2(x+5)}-\frac{1}{4(x+1)} & =\frac{2(x+1)}{4(x+5)(x+1)}-\frac{x+5}{4(x+5)(x+1)} \\
& =\frac{2 x+2-x-5}{4(x+5)(x+1)} \\
& =\frac{x-3}{4(x+5)(x+1)}
\end{aligned}
$$

(ii) $\frac{3 u}{u^{2}-4 u+4}+\frac{1}{2-u}=\frac{3 u}{(u-2)^{2}}-\frac{1}{u-2}$

$$
\begin{aligned}
& =\frac{3 u}{(u-2)^{2}}-\frac{u-2}{(u-2)^{2}} \\
& =\frac{3 u-u+2}{(u-2)^{2}} \\
& =\frac{2 u+2}{(u-2)^{2}}
\end{aligned}
$$

Edexcel A level Maths Algebra 2 Exercise solutions

3. (i) $\frac{3 x}{4}-\frac{x}{6}=7$
$\frac{9 x}{12}-\frac{2 x}{12}=7$
$\frac{7 x}{12}=7$
$x=12$
(ii) $\frac{30}{2 x-5}+\frac{27}{2 x+1}=13$
$30(2 x+1)+27(2 x-5)=13(2 x-5)(2 x+1)$
$60 x+30+54 x-135=13\left(4 x^{2}-8 x-5\right)$
$114 x-105=52 x^{2}-104 x-65$
$52 x^{2}-218 x+40=0$
$26 x^{2}-109 x+20=0$
$(x-4)(26 x-5)=0$
$x=4$ or $x=\frac{5}{26}$
4. (i) since a cubic is being divided by a linear expression, the quotient is quadratic and the remainder constant.
$\frac{3 x^{3}-x^{2}+2 x-4}{x+2}=A x^{2}+B x+C+\frac{D}{x+2}$
$3 x^{3}-x^{2}+2 x-4=\left(A x^{2}+B x+C\right)(x+2)+D$

$$
=A x^{3}+(2 A+B) x^{2}+(2 B+C) x+2 C+D
$$

Equating coefficients of x^{3} :

$$
A=3
$$

Equating coefficients of x^{2} : $\quad 2 A+B=-1 \Rightarrow B=-7$
Equating coefficients of $x: 2 B+C=2 \Rightarrow C=16$
Equating constant terms: $2 C+D=-4 \Rightarrow D=-36$
$\frac{3 x^{3}-x^{2}+2 x-4}{x+2}=3 x^{2}-7 x+16-\frac{36}{x+2}$
(ii) Since a cubic is being divided by a quadratic, the quotient is linear and the remainder linear.

$$
\begin{aligned}
& \frac{x^{3}}{x^{2}+2}=A x+B+\frac{C x+D}{x^{2}+2} \\
& x^{3}=(A x+B)\left(x^{2}+2\right)+C x+D \\
& \quad=A x^{3}+B x^{2}+(2 A+C) x+2 B+D
\end{aligned}
$$

Equating coefficients of x^{3} :

$$
A=1
$$

Equating coefficients of x^{2} :
$B=0$
Equating coefficients of $x: 2 A+c=0 \Rightarrow C=-2$

Edexcel A level Maths Algebra 2 Exercise solutions

Equating constant terms: $2 B+D=0 \Rightarrow D=0$
$\frac{x^{3}}{x^{2}+2}=x-\frac{2 x}{x^{2}+2}$
(iii) Since a linear expression is being divided by a linear expression, the quotient is a constant and the remainder a constant.
$\frac{6 x-2}{2 x+3}=A+\frac{B}{2 x+3}$
$6 x-2=A(2 x+3)+B$
$=2 A x+3 A+B$
comparing coefficients of x :
$2 A=6 \quad \Rightarrow A=3$
comparing constant terms:
$3 A+B=-2 \Rightarrow B=-11$
$\frac{6 x-2}{2 x+3}=3-\frac{11}{2 x+3}$

