Section 2: General equations

Section test

(Throughout this test, unless instructed otherwise, take $\mathrm{g}=9.8 \mathrm{~ms}^{-2}$ and round answers, where necessary, to 3 s.f.)

1. In this question, take $\mathbf{g}=\mathbf{1 0} \mathrm{ms}^{-\mathbf{2}}$.

A particle P is projected from a point A at the top of a cliff, 52 m vertically above sea level. It moves freely under gravity until it strikes the sea at a point S . The initial velocity components are $24 \mathrm{~ms}^{-1}$ horizontally and $7 \mathrm{~ms}^{-1}$ vertically.

Find the time of flight of the particle.
Find the horizontal distance AS.
Find the speed of the particle when it hits the sea.
2. A bullet is fired with an initial velocity of $600 \mathrm{~ms}^{-1}$ in a direction making an angle of 25° with the horizontal. Find its range over horizontal ground.
3. Find the greatest possible range of a projectile which is fired at $60 \mathrm{~ms}^{-1}$ inside a tunnel which is 4.8 m high with a level floor.
4. Over level ground, the greatest range of a gun is 25 km . Find the muzzle velocity of a bullet leaving the barrel of this gun.
5. A particle is projected such that its range over level ground is three times the maximum height of its path. Find the angle of projection.
6. A particle is projected from a point O and passes through a point P when travelling horizontally. P is 10 m horizontally and 8 m vertically from O .

Find the angle of projection, to the nearest degree.
Find the magnitude of the initial velocity.
7. A gun fires a shell at $210 \mathrm{~ms}^{-1}$. What is the lowest angle of elevation at which a shell should be fired to hit a target 3.6 km away, at the same level as the gun.

Edexcel A level Maths Projectiles $\mathbf{2}$ section test solns

Solutions to section test

1) Taking the origin as point A, the time of flight is the time at which $y=-52$.

$$
\begin{array}{lll}
\text { Vertically: } & u=7 & s=u t+\frac{1}{2} a t^{2} \\
& g=-10 & -52=7 t-\frac{1}{2} \times 10 t^{2} \\
& s=-52 & 5 t^{2}-7 t-52=0 \\
& t=? & (5 t+13)(t-4)=0 \\
& & t=-\frac{13}{5} \text { or } t=4
\end{array}
$$

Time of flight must be positive, so time of flight of the particle is 4 seconds.

The horizontal distance AS is the horizontal distance travelled in 4 seconds.
The horizontal velocity $=24 \mathrm{~ms}^{-1}$
so the horizontal distance $x=24 \times 4=96 \mathrm{~m}$.

The horizontal velocity when it hits the sea $=24 \mathrm{~ms}^{-1}$.
The vertical velocity when it hits the sea is given by

$$
\begin{aligned}
v_{y}^{2} & =u_{y}^{2}-29 s \\
& =7^{2}+2 \times-10 \times-52 \\
& =1089 \\
v_{y} & =33
\end{aligned}
$$

speed of particle $=\sqrt{24^{2}+33^{2}}=40.8 \mathrm{~ms}^{-1}$ (3s.f.).
2) Vertically:

$$
\begin{aligned}
& y=v t \sin \alpha-\frac{1}{2} g t^{2} \\
& 0=600 t \sin 25^{\circ}-\frac{1}{2} \times 9.8 t^{2} \\
& 0=t\left(600 \sin 25^{\circ}-4.9 t\right) \\
& t=0 \text { or } t=\frac{600 \sin 25^{\circ}}{4.9}
\end{aligned}
$$

Horizontally: $\quad x=v t \cos \alpha$

$$
\begin{aligned}
& =600 \times \frac{600 \sin 25^{\circ}}{4.9} \times \cos 25^{\circ} \\
& =28100 \mathrm{~m}(3 \text { s.f. })
\end{aligned}
$$

The range of the bullet is 28.1 km .

Edexcel A level Maths Projectiles 2 section test solns

3) Greatest possible range will occur if the greatest height is 4.8 m .

At greatest height:

$$
\begin{aligned}
& v_{y}^{2}=u_{y}^{2}-29 s \\
& 0=(60 \sin \theta)^{2}-2 \times 9.8 \times 4.8 \\
& 3600 \sin ^{2} \theta=94.08 \\
& \sin ^{2} \theta=\frac{94.08}{3600} \\
& \theta=9.303^{\circ} \\
& y=u t \sin \theta-\frac{1}{2} g t^{2} \\
& 0=t(60 \sin \theta-4.9 t) \\
& t=\frac{60 \sin \theta}{4.9}
\end{aligned}
$$

For time of flight:

$$
\begin{aligned}
\text { Range } & =60 t \cos \theta \\
& =60 \times \frac{60 \sin \theta}{4.9} \times \cos \theta \\
& =117 \mathrm{~m}(3 \mathrm{s.f.})
\end{aligned}
$$

4) The greatest range is the range when the angle of projection $=45^{\circ}$.
vertically: $\quad y=v t \sin 45^{\circ}-\frac{1}{2} g t^{2}$

$$
\begin{aligned}
& 0=t\left(\frac{v}{\sqrt{2}}-4.9 t\right) \\
& t=\frac{v}{4.9 \sqrt{2}}
\end{aligned}
$$

Horizontally: $\quad 25000=v t \cos 45^{\circ}$

$$
\begin{aligned}
& 25000=v \times \frac{v}{4.9 \sqrt{2}} \times \frac{1}{\sqrt{2}} \\
& v^{2}=25000 \times 9.8 \\
& v=495
\end{aligned}
$$

The muzzle velocity is $495 \mathrm{~ms}^{-1}$ (3 s.f.)
5) Range $=\frac{u^{2} \sin 2 \theta}{9}$

Maximum height $=\frac{u^{2} \sin ^{2} \theta}{2 g}$
Range $=3 \times$ maximum height

Edexcel A level Maths Projectiles 2 section test solns

$\frac{x^{2} \sin 2 \theta}{\phi}=3 \times \frac{x^{2} \sin ^{2} \theta}{2 \phi}$
$2 \sin 2 \theta=3 \sin ^{2} \theta$
$4 \sin \theta \cos \theta-\sin ^{2} \theta=0$
$\sin \theta(4 \cos \theta-3 \sin \theta)=0$
$\sin \theta=0$ or $4 \cos \theta=3 \sin \theta$
$\theta=0$ or $\tan \theta=\frac{4}{3}$

$$
\theta=53.1^{\circ}
$$

6) When travelling horizontally, the particle is at its greatest height.

Maximum height $=\frac{u^{2} \sin ^{2} \theta}{2 g} \Rightarrow \frac{u^{2} \sin ^{2} \theta}{2 g}=8$
When at its greatest height, horizontal distance travelled is 10 m , so horizontal range $=20 \mathrm{~m}$.
Range $=\frac{u^{2} \sin 2 \theta}{9} \Rightarrow \frac{u^{2} \sin 2 \theta}{9}=20$
$(1) \div(2): \quad \frac{\sin ^{2} \theta}{2 \sin 2 \theta}=\frac{8}{20}$

$$
\begin{aligned}
& \frac{\sin ^{2} \theta}{4 \sin \theta \cos \theta}=\frac{2}{5} \\
& \tan \theta=\frac{8}{5} \\
& \theta=58^{\circ} \text { (2 s.f.) }
\end{aligned}
$$

From above, $\frac{u^{2} \sin ^{2} \theta}{2 g}=8$

$$
\begin{aligned}
& u^{2}=\frac{16 g}{\sin ^{2} \theta}=\frac{16 \times 9.8}{\sin ^{2} 57.995} \\
& u=14.8 \mathrm{~ms}^{-1}(3 \text { s.f. })
\end{aligned}
$$

7) Range $=\frac{u^{2} \sin 2 \theta}{9}$
$3600=\frac{210^{2} \sin 2 \theta}{9.8}$
$\sin 2 \theta=0.8$
$2 \theta=53.13^{\circ}$ or 126.87°
$\theta=26.6^{\circ}$ or 63.4°
The lowest angle is 26.6°.
