Edexcel A level Maths Forces and motion in 2D "integral’

Section 1: Resolving forces

Section test

1. A force of 5 N acts due north and a force of 2 N acts due east. What is the magnitude of the resultant force?
2. A tree trunk is being pulled by cables from two tractors, as shown in the diagram below. One cable has a tension of 400 N and the other a tension of 500 N . The angle between the two cables is 35°. These two tractors are replaced by a single tractor, which pulls on a single cable with a with a force equivalent to that of the other two tractors combined.

What is the tension in the cable from the single tractor?
3. Three forces of sizes $15 \mathrm{~N}, 7 \mathrm{~N}$ and 19 N pulling at 120° to one another are acting on a particle.
What is the size of the resultant force?
What is the direction of the resultant force, to the nearest degree?
4. ABCD is a square. Forces of $2 \mathrm{~N}, 3 \sqrt{2} \mathrm{~N}$ and 9 N act on a particle at A in the directions of AB, AC and AD respectively. An additional force X is applied at A so that the particle is in equilibrium.
What is the magnitude of the force X ?
What is the direction of the force X ?
5. A particle of mass 5 kg lies on a smooth plane inclined at an angle of 30° to the horizontal. The particle is prevented from sliding down the plane by a string parallel to the plane.
What is the tension in the string?
What is the normal reaction force between the particle and the plane?
6. A mass of 50 grams hangs in equilibrium on a string. The mass is pulled aside and upwards by a force of 0.3 N which makes an angle of 30° with the horizontal. What angle does the string makes with the vertical?
What is the tension in the string?

Edexcel A level Forces in 2D 1 section test solns

Solutions to section test

1. $R^{2}=5^{2}+2^{2}=29$
$R=5.39$
The magnitude of the resultant force is 5.39 N .
2. Total force in the x-direction $=400+500 \cos 35^{\circ}$

Total force in the y-direction $=500 \sin 35^{\circ}$

$$
\begin{aligned}
|\underset{\sim}{R}| & =\sqrt{\left(400+500 \cos 35^{\circ}\right)^{2}+\left(500 \sin 35^{\circ}\right)^{2}} \\
& =859 \mathrm{~N}(3 \text { s.f. })
\end{aligned}
$$

3.

Total force in the x-direction $=19-15 \cos 60^{\circ}-7 \cos 60^{\circ}$

$$
\begin{aligned}
& =19-7.5-3.5 \\
& =8
\end{aligned}
$$

Total force in the y-direction $=15 \sin 60^{\circ}-7 \sin 60^{\circ}$

$$
=8 \times \frac{\sqrt{3}}{2}
$$

Magnitude of resultant $=\sqrt{=4 \sqrt{3}} \sqrt{8^{2}+(4 \sqrt{3})^{2}}=10.6 \mathrm{~N}(3 \mathrm{~s} . f$.

$\tan \theta=\frac{4 \sqrt{3}}{8}$
$\theta=41^{\circ}$ (to nearest degree)
The resultant force acts in a direction 41° from the 19 N force.

Edexcel A level Forces in 2D 1 section test solns

4.

Resolving in direction $A B$:

$$
\begin{align*}
& 2+3 \sqrt{2} \cos 45^{\circ}-x \cos \theta=0 \\
& x \cos \theta=2+3 \sqrt{2} \times \frac{1}{\sqrt{2}}=5 \tag{1}
\end{align*}
$$

Resolving in direction $A D$:

$$
\begin{align*}
& 9+3 \sqrt{2} \sin 45^{\circ}-x \sin \theta=0 \\
& x \sin \theta=9+3 \sqrt{2} \times \frac{1}{\sqrt{2}}=12 \tag{2}
\end{align*}
$$

$x^{2} \cos ^{2} \theta=25$
$x^{2} \sin ^{2} \theta=144$
Adding: $x^{2}=169$

$$
x=13
$$

Dividing (2) by (1): $\tan \theta=\frac{12}{5}$

$$
\theta=67.4^{\circ}
$$

The direction of the force x is at 67.4° to $B A$.
5.

Resolving up the plane: $T-5 g \sin 30^{\circ}=0$

$$
T=5 \times 9.8 \times \frac{1}{2}=24.5
$$

The tension in the string is 24.5 N .

Edexcel A level Forces in 2D 1 section test solns

Resolving perpendicular to the plane: $R-5 g \cos 30^{\circ}=0$

$$
R=5 \times 9.8 \times \frac{1}{2} \sqrt{3}=42.4
$$

The normal reaction force is 42.4 N (3 s.f.)
6.

Resolving horizontally: $0.3 \cos 30^{\circ}-T \sin \theta=0$

$$
\begin{align*}
& T \sin \theta=0.3 \times \frac{1}{2} \sqrt{3} \\
& T \sin \theta=0.15 \sqrt{3} \tag{1}
\end{align*}
$$

Resolving vertically:

$$
\begin{align*}
& T \cos \theta+0.3 \sin 30^{\circ}-0.05 g=0 \\
& T \cos \theta=0.05 \times 9.8-0.3 \times \frac{1}{2} \\
& T \cos \theta=0.34 \tag{2}
\end{align*}
$$

Dividing (1) by (2): $\tan \theta=\frac{0.15 \sqrt{3}}{0.34}$

$$
\theta=37.4^{\circ}
$$

The string makes an angle of 37.4° with the vertical.
using equation (2): $T \cos 37.4^{\circ}=0.34$

$$
T=0.428
$$

The tension in the string is 0.428 N .

