Edexcel A level Maths Mechanics Kinematics

Section 1: Motion in two dimensions

Section test

1. A particle, initially moving with velocity $5 \mathbf{i}-2 \mathbf{j} \mathrm{~ms}^{-1}$ is subject to a constant acceleration of $2 \mathbf{i}+\mathbf{j} \mathrm{ms}^{-2}$. What is the velocity of the particle at $t=5$?
2. A particle which is initially moving with a velocity of $-4 \mathbf{i}+3 \mathbf{j} \mathrm{~ms}^{-1}$ is subject to a constant acceleration. After 3 seconds its new velocity is $2 \mathbf{i}+\mathbf{j} \mathrm{ms}^{-1}$. What is the displacement of the particle?
3. A particle has velocity $\mathbf{v}=\left(t^{2} \mathbf{i}+3 t \mathbf{j}\right) \mathrm{ms}^{-1}$ at time t.

Find the acceleration of the particle when $t=2$.
4. The velocity of a particle is modelled by $\mathbf{v}=\left(3 t^{2} \mathbf{i}+10 t \mathbf{j}\right) \mathrm{ms}^{-1}$. Given that $\mathbf{r}=(4 \mathbf{i}-4 \mathbf{j}) \mathrm{m}$ when $t=0$, find the distance of the particle from the origin when $t=2$.
5. If a particle has acceleration $\mathbf{a}=((4 t+5) \mathbf{i}+6 t \mathbf{j}) \mathrm{ms}^{-2}$ and the particle is initially at rest, find its velocity when $t=4$.
6. A bird flies in a vertical plane from a point on the ground. Its position from the time when it leaves the ground until it returns to the ground again is modelled as $\mathbf{r}=\left(\frac{1}{4}\left(t^{2}+2 t\right) \mathbf{i}+\frac{1}{10}\left(-t^{3}+t^{2}+6 t\right) \mathbf{j}\right) \mathrm{m}$, where \mathbf{i} is a unit vector in the horizontal direction and \mathbf{j} is a unit vector in the vertical direction.
Find the time at which it reaches the ground again
Find its velocity as it hits the ground.
7. The position of a racing car can be modelled as
$\mathbf{r}=\left(\left(t^{2}-5 t\right) \mathbf{i}+\frac{1}{5}\left(t^{3}+5 t^{2}-7 t\right) \mathbf{j}\right) \mathrm{m}$ for a 4 second period during a race. The starting point of the model is taken as $t=0$.
Find the velocity of the car after 3 seconds.
Find the acceleration of the car after 1 second.
8. The acceleration of a particle is given by $\left(\left(t^{2}+2\right) \mathbf{i}+2 t \mathbf{j}\right) \mathrm{ms}^{-2}$. Its initial velocity is $(6 \mathbf{i}+7 \mathbf{j}) \mathrm{ms}^{-1}$ and it starts initially at the point $(5 \mathbf{i}+6 \mathbf{j}) \mathrm{m}$. Find its position after 6 seconds.

Edexcel A level Maths Kinematics 1 section test

Solutions to section test

1. $\underset{\sim}{v}=\underset{\sim}{u}+\underset{\sim}{a} t$
$\underset{\sim}{v}=5 \underset{\sim}{i}-2 \underset{\sim}{j} j+5(2 \underset{\sim}{i}+\underset{\sim}{j})$
$v=15 i+3 j$
$\underset{\sim}{v}=15 \underset{\sim}{i}+3 \underset{\sim}{j}$
2. $\underset{\sim}{r}=\frac{1}{2}(\underset{\sim}{u}+\underset{\sim}{v}) t$

$$
\begin{aligned}
& =\frac{1}{2}(-4 \underset{\sim}{i}+3 \underset{\sim}{j}+2 \underset{\sim}{i}+\underset{\sim}{j}) \times 3 \\
& =\frac{3}{2}(-2 \underset{\sim}{i}+4 \underset{\sim}{j}) \\
& =-3 \underset{\sim}{i}+6 \underset{\sim}{j}
\end{aligned}
$$

3. $\underset{\sim}{v}=t^{2} \underset{\sim}{i}+3 t_{\sim}^{f}$
$\underset{\sim}{a}=\frac{d \underset{\sim}{v}}{d t}=2 t{ }_{\sim}^{i}+3 \underset{\sim}{j}$
When $t=2, \underset{\sim}{a}=2 \times 2 \underset{\sim}{i}+3 \underset{\sim}{j}=4 \underset{\sim}{i}+3 \underset{\sim}{j}$
The acceleration when $t=2$ is $(4 \underset{\sim}{i}+3 \underset{\sim}{j}) \mathrm{ms}^{-2}$.
4. $\underset{\sim}{r}=\int \underset{\sim}{v} d t=\int\left(3 t^{2} \underset{\sim}{i}+10 \underset{\sim}{j}\right) d t=t^{3} \underset{\sim}{i}+5 t^{2} \underset{\sim}{j}+\underset{\sim}{c}$

When $t=0, \underset{\sim}{r}=4 \underset{\sim}{i}-4 \underset{\sim}{j} \Rightarrow \underset{\sim}{c}=4 \underset{\sim}{i}-4 \underset{\sim}{j}$,
so $\underset{\sim}{r}=t^{3} \underset{\sim}{i}+5 t^{2} \underset{\sim}{j}+4 \underset{\sim}{i}-4 \underset{\sim}{j}$
Whent $=2, \underset{\sim}{r}=2^{3} \underset{\sim}{i}+5 \times 2^{2} \underset{\sim}{j}+4 \underset{\sim}{i}-4 \underset{\sim}{j}=12 \underset{\sim}{i}+16 \underset{\sim}{j}$
Distance of particle from origin $=\sqrt{12^{2}+16^{2}}=20 \mathrm{~m}$
5. $\underset{\sim}{v}=\int \underset{\sim}{a} d t=\int((4 t+5) \underset{\sim}{i}+6 \underset{\sim}{t}) d t=\left(2 t^{2}+5 t\right) \underset{\sim}{i}+3 t^{2} \underset{\sim}{j}+\underset{\sim}{c}$

When $t=0, \underset{\sim}{v}=0 \Rightarrow \underset{\sim}{c}=0$
so $\underset{\sim}{v}=\left(2 t^{2}+5 t\right) \underset{\sim}{i}+3 t^{2} \underset{\sim}{j}$
When $=4, \underset{\sim}{V}=\left(2 \times 4^{2}+5 \times 4\right) \underset{\sim}{i}+3 \times 4^{2} \underset{\sim}{j}=52 \underset{\sim}{i}+48 \underset{\sim}{j}$
The velocity of the particle is $(52 \underset{\sim}{i}+48 \underset{\sim}{j}) \mathrm{ms}^{-1}$.
6. It reaches the ground when the component of $\underset{\sim}{r}$ in the $\underset{\sim}{j}$ direction is zero.

$$
\begin{aligned}
& -t^{3}+t^{2}+6 t=0 \\
& t\left(t^{2}-t-6\right)=0 \\
& t(t-3)(t+2) \\
& t=0,3,-2
\end{aligned}
$$

since t must be positive, it reaches the ground after 3 seconds..
$\underset{\sim}{v}=\frac{d \underline{\sim}}{d t}=\frac{1}{4}(2 t+2) \underset{\sim}{i}+\frac{1}{10}\left(-3 t^{2}+2 t+6\right) \underset{\sim}{j}$
When $t=3, \underset{\sim}{v}=\frac{1}{4}(2 \times 3+2) \underset{\sim}{i}+\frac{1}{10}\left(-3 \times 3^{2}+2 \times 3+6\right) \underset{\sim}{j}=2 \underset{\sim}{i}-1.5 \underset{\sim}{j}$
its velocity as it hits the ground is $(2 \underset{\sim}{i}-1.5 \underset{\sim}{j}) \mathrm{ms}^{-1}$.
7. $\underset{\sim}{v}=\frac{d r}{d t}=(2 t-5) \underset{\sim}{i}+\frac{1}{5}\left(3 t^{2}+10 t-7\right) \underset{\sim}{j}$

Whent $=3, \underset{\sim}{v}=(2 \times 3-5) \underset{\sim}{i}+\frac{1}{5}\left(3 \times 3^{2}+10 \times 3-7\right) \underset{\sim}{j}=\underset{\sim}{i}+10 \underset{\sim}{j}$
The velocity of the car after 3 seconds is $(\underset{\sim}{i}+10 \underset{\sim}{j}) \mathrm{ms}^{-1}$.
$\underset{\sim}{a}=\frac{d \underset{\sim}{v}}{d t}=2 \underset{\sim}{i}+\frac{1}{5}(6 t+10) \underset{\sim}{j}$
When $t=1, \underset{\sim}{a}=2 \underset{\sim}{i}+\frac{1}{5}(6+10) \underset{\sim}{j}=2 \underset{\sim}{i}+3.2 \underset{\sim}{j}$
The acceleration of the car after 1 second is $(2 \underset{\sim}{i}+3.2 \underset{\sim}{j}) \mathrm{ms}^{-2}$.
8. $\quad \underset{\sim}{v}=\int \underset{\sim}{a} d t=\int\left(\left(t^{2}+2\right) \underset{\sim}{i}+2 \underset{\sim}{f}\right) d t=\left(\frac{1}{3} t^{3}+2 t\right) \underset{\sim}{i}+t^{2} \underset{\sim}{j}+\underset{\sim}{c}$

When $t=0, \underset{\sim}{v}=6 \underset{\sim}{i}+7 \underset{\sim}{j}$, so $\underset{\sim}{c}=6 \underset{\sim}{i}+7 \underset{\sim}{j}$.
$\underset{\sim}{v}=\left(\frac{1}{3} t^{3}+2 t\right) \underset{\sim}{i}+t^{2} \underset{\sim}{j}+6 \underset{\sim}{i}+7 \underset{\sim}{j}=\left(\frac{1}{3} t^{3}+2 t+6\right) \underset{\sim}{i}+\left(t^{2}+7\right) \underset{\sim}{j}$
$\underset{\sim}{r}=\int \underset{\sim}{v} d t=\left(\frac{1}{12} t^{4}+t^{2}+6 t\right) \underset{\sim}{i}+\left(\frac{1}{3} t^{3}+7 t\right) \underset{\sim}{j}+\underset{\sim}{d}$
When $t=0, \underset{\sim}{r}=5 \underset{\sim}{i}+6 \underset{\sim}{j}$, so $\underset{\sim}{d}=5 \underset{\sim}{i}+6 \underset{\sim}{j}$
$\underset{\sim}{r}=\left(\frac{1}{12} t^{4}+t^{2}+6 t\right) \underset{\sim}{i}+\left(\frac{1}{3} t^{3}+7 t\right) \underset{\sim}{j}+5 \underset{\sim}{i}+6 \underset{\sim}{j}$ $=\left(\frac{1}{12} t^{4}+t^{2}+6 t+5\right) \underset{\sim}{i}+\left(\frac{1}{3} t^{3}+7 t+6\right) \underset{\sim}{j}$
Whent $=6$,
$\underset{\sim}{r}=\left(\frac{1}{12} \times 6^{4}+6^{2}+6 \times 6+5\right) \underset{\sim}{i}+\left(\frac{1}{3} \times 6^{3}+7 \times 6+6\right) \underset{\sim}{j}=185 \underset{\sim}{i}+120 \underset{\sim}{j}$
Its posítion is $(185 \underset{\sim}{i}+120 \underset{\sim}{j}) m$

