

Section 1: Motion in two dimensions

Section test

- 1. A particle, initially moving with velocity 5i 2j ms⁻¹ is subject to a constant acceleration of $2\mathbf{i} + \mathbf{j} \text{ ms}^{-2}$. What is the velocity of the particle at t = 5?
- 2. A particle which is initially moving with a velocity of $-4\mathbf{i} + 3\mathbf{j}$ ms⁻¹ is subject to a constant acceleration. After 3 seconds its new velocity is $2\mathbf{i} + \mathbf{j}$ ms⁻¹. What is the displacement of the particle?
- 3. A particle has velocity $\mathbf{v} = (t^2 \mathbf{i} + 3t \mathbf{j}) \text{ ms}^{-1}$ at time t. Find the acceleration of the particle when t = 2.
- 4. The velocity of a particle is modelled by $\mathbf{v} = (3t^2\mathbf{i} + 10t\mathbf{j}) \text{ ms}^{-1}$. Given that $\mathbf{r} = (4\mathbf{i} - 4\mathbf{j})\mathbf{m}$ when t = 0, find the distance of the particle from the origin when t = 2.
- 5. If a particle has acceleration $\mathbf{a} = ((4t+5)\mathbf{i}+6t\mathbf{j})\mathbf{ms}^{-2}$ and the particle is initially at rest, find its velocity when t = 4.
- 6. A bird flies in a vertical plane from a point on the ground. Its position from the time when it leaves the ground until it returns to the ground again is modelled as $\mathbf{r} = \left(\frac{1}{4}(t^2 + 2t)\mathbf{i} + \frac{1}{10}(-t^3 + t^2 + 6t)\mathbf{j}\right)\mathbf{m}$, where **i** is a unit vector in the horizontal direction and **j** is a unit vector in the vertical direction. Find the time at which it reaches the ground again Find its velocity as it hits the ground.
- 7. The position of a racing car can be modelled as $\mathbf{r} = ((t^2 - 5t)\mathbf{i} + \frac{1}{5}(t^3 + 5t^2 - 7t)\mathbf{j})\mathbf{m}$ for a 4 second period during a race. The starting point of the model is taken as t = 0. Find the velocity of the car after 3 seconds. Find the acceleration of the car after 1 second.
- 8. The acceleration of a particle is given by $((t^2 + 2)\mathbf{i} + 2t\mathbf{j})\mathbf{ms}^{-2}$. Its initial velocity is $(6\mathbf{i}+7\mathbf{j})$ ms⁻¹ and it starts initially at the point $(5\mathbf{i}+6\mathbf{j})$ m. Find its position after 6 seconds.

Solutions to section test

1. v = u + at v = 5i - 2j + 5(2i + j)v = 15i + 3j

2.
$$\chi = \frac{1}{2}(\underline{u} + \underline{v})t$$
$$= \frac{1}{2}\left(-4\underline{i} + 3\underline{j} + 2\underline{i} + \underline{j}\right) \times 3$$
$$= \frac{3}{2}\left(-2\underline{i} + 4\underline{j}\right)$$
$$= -3\underline{i} + 6\underline{j}$$

3.
$$v = t^{2}i + 3tj$$

 $a = \frac{dv}{dt} = 2ti + 3j$
When $t = 2$, $a = 2 \times 2i + 3j = 4i + 3j$
The acceleration when $t = 2$ is $(4i + 3j)$ ms⁻².

4.
$$r = \int \sqrt{dt} = \int \left(3t^{2}i + 10i \right) dt = t^{3}i + 5t^{2}j + c$$
When $t = 0$, $r = 4i - 4j$ $\Rightarrow c = 4i - 4j$,
so $r = t^{3}i + 5t^{2}j + 4i - 4j$
When $t = 2$, $r = 2^{3}i + 5 \times 2^{2}j + 4i - 4j = 12i + 16j$
Distance of particle from origin $= \sqrt{12^{2} + 16^{2}} = 20$ m

5.
$$\begin{array}{l} \sqrt{2} = \int a dt = \int \left((4t+5)i + 6t j \right) dt = (2t^{2}+5t)i + 3t^{2} j + c \\ \text{When } t = 0, \ \sqrt{2} = 0 \quad \Rightarrow c = 0 \\ \text{so } \sqrt{2} = (2t^{2}+5t)i + 3t^{2} j \\ \text{When } t = 4, \ \sqrt{2} = (2 \times 4^{2}+5 \times 4)i + 3 \times 4^{2} j = 52i + 48 j \\ \text{The velocity of the particle is } \left(52i + 48 j \right) \text{ ms}^{-1}. \end{array}$$

Edexcel A level Maths Kinematics 1 section test

6. It reaches the ground when the component of \underline{r} in the j direction is zero.

 $-t^{3} + t^{2} + 6t = 0$ $t(t^{2} - t - 6) = 0$ t(t - 3) (t + 2)t = 0, 3, -2

Since t must be positive, it reaches the ground after 3 seconds..

$$y = \frac{dr}{dt} = \frac{1}{4}(2t+2)j + \frac{1}{10}(-3t^{2}+2t+6)j$$

When $t = 3$, $y = \frac{1}{4}(2\times3+2)j + \frac{1}{10}(-3\times3^{2}+2\times3+6)j = 2j - 1.5j$
Its velocity as it hits the ground is $(2j - 1.5j)$ ms⁻¹.

$$\mathcal{F}. \quad \underbrace{\forall} = \frac{d\underline{r}}{dt} = (2t-5)\underline{i} + \frac{1}{5}(3t^2 + 10t - \mathcal{F})\underline{j}$$

$$When t = 3, \quad \underbrace{\forall} = (2 \times 3 - 5)\underline{i} + \frac{1}{5}(3 \times 3^2 + 10 \times 3 - \mathcal{F})\underline{j} = \underline{i} + 10\underline{j}$$

$$The \ velocity \ of the \ car \ after \ 3 \ seconds \ is \ \left(\underline{i} + 10\underline{j}\right) \ ms^{-1}.$$

$$\begin{split} \tilde{g} &= \frac{d\underline{v}}{dt} = 2\underline{i} + \frac{1}{5}(6t + 10)\underline{j} \\ \text{When } t &= 1, \ \tilde{g} = 2\underline{i} + \frac{1}{5}(6 + 10)\underline{j} = 2\underline{i} + 3.2\underline{j} \\ \text{The acceleration of the car after 1 second is } \left(2\underline{i} + 3.2\underline{j}\right) \text{ ms}^{-2}. \end{split}$$

8.
$$y = \int a dt = \int \left((t^{2} + 2)i + 2i \right) dt = (\frac{1}{3}t^{3} + 2t)i + t^{2}j + c$$
when $t = 0$, $y = 6i + 7j$, so $c = 6i + 7j$.
 $y = (\frac{1}{3}t^{3} + 2t)i + t^{2}j + 6i + 7j = (\frac{1}{3}t^{3} + 2t + 6)i + (t^{2} + 7)j$
 $r = \int y dt = (\frac{1}{12}t^{4} + t^{2} + 6t)i + (\frac{1}{3}t^{3} + 7t)j + d$
when $t = 0$, $r = 5i + 6j$, so $d = 5i + 6j$
 $r = (\frac{1}{12}t^{4} + t^{2} + 6t)i + (\frac{1}{3}t^{3} + 7t)j + 5i + 6j$
 $= (\frac{1}{12}t^{4} + t^{2} + 6t + 5)i + (\frac{1}{3}t^{3} + 7t + 6)j$
when $t = 6$,
 $r = (\frac{1}{12} \times 6^{4} + 6^{2} + 6 \times 6 + 5)i + (\frac{1}{3} \times 6^{3} + 7 \times 6 + 6)j = 185i + 120j$
Its position is $(185i + 120j)$ m