Section 2: Moments of forces at an angle

Section test

1. Find the anticlockwise moment of the 10 N force about the point A in the diagram below. Give your answer to 3 s.f.

2. Find the total anticlockwise moment of the forces shown about the point A in the diagram below. Give your answer to 3 s.f.

3. In the diagram below, the total moment of the forces shown about O is zero. The length of the rod (which has negligible weight) is 6 m . How far from O does the 12 N force act?

4. A ladder of mass 8 kg and length 4 m is placed against a smooth wall, with its foot on rough horizontal ground, making an angle of 60° with the ground.. A woman of mass 60 kg stands 1 m from the top of the ladder. Find the frictional force between the foot of the ladder and the ground.
5. A uniform beam AB of mass 10 kg is freely hinged at A and is kept horizontal by a string from B to a point vertically above A. The string makes an angle of 30° with the beam. Find, in terms of g, the tension in the string.
Find, in terms of g, the magnitude of the reaction at the hinge.
Find the angle which the reaction with the hinge makes with AB.
6. A heavy rod AB of mass 25 kg and length 2.4 m is hinged at A to a point on a vertical wall. It is kept horizontal by a chain attached to B and to a point 1.5 m vertically above A. The bar carries an additional mass of $10 \mathrm{~kg}, 1.8 \mathrm{~m}$ from A.

Find the tension in the chain.
Find the magnitude of the reaction at A .
Find the direction of the reaction at A .

Edexcel A level Maths Moments 2 section test solutions

Solutions to section test

1) Moment $=8 \times 10 \sin 25^{\circ}=33.8 \mathrm{Nm}$
2) Total moment anticlockwise $=5 \times 4 \sin 35^{\circ}-5 \times 3=-3.53$
3) Let the distance of the 12 N force from 0 be $\times \mathrm{m}$.
$6 \times 8 \sin 30^{\circ}-12 x=0$
$x=2$
so the force is 2 m from 0 .
4)

Resolving vertically: $\quad R-8 g-60 g=0$

$$
R=689
$$

Taking moments about A :

$$
\begin{aligned}
& 60 g \cos 60^{\circ} \times 1+8 g \cos 60^{\circ} \times 2+F \sin 60^{\circ} \times 4-R \cos 60^{\circ} \times 4=0 \\
& 30 g+8 g+2 F \sqrt{3}-2 R=0 \\
& 38 g+2 F \sqrt{3}-136 g=0 \\
& 2 F \sqrt{3}=98 g \\
& F=\frac{98 \times 9.8}{2 \sqrt{3}}=277 \mathrm{~N}(3 \mathrm{s.f.})
\end{aligned}
$$

5)

Edexcel A level Maths Moments 2 section test solutions

Taking moments about A:

$$
\begin{aligned}
& T \sin 30^{\circ} \times 2 \not /-10 g \times \neq 0 \\
& T \times \frac{1}{2} \times 2=10 g \\
& T=10 g
\end{aligned}
$$

Taking moments about B :

$$
\begin{aligned}
& Y \times 2 \not-10 g \times \neq=0 \\
& 2 Y=10 g \\
& Y=5 g \\
& X-T \cos 30^{\circ}=0
\end{aligned}
$$

Resolving horizontally:
$x=\log \times \frac{\sqrt{3}}{2}=59 \sqrt{3}$
Magnitude of reaction $=\sqrt{x^{2}+y^{2}}$

$$
\begin{aligned}
& =\sqrt{75 g^{2}+25 g^{2}} \\
& =10 g
\end{aligned}
$$

$\tan \theta=\frac{59}{5 g \sqrt{3}}=\frac{1}{\sqrt{3}}$
$\theta=30^{\circ}$
6)

$\tan \theta=\frac{1.5}{2.4}$
$\theta=32^{\circ}$
Taking moments about A:

$$
\begin{aligned}
& 25 g \times 1.2+10 g \times 1.8-T \sin \theta \times 2.4=0 \\
& 48 g=2.4 T \sin 32^{\circ} \\
& T=370 \text { (3 s.f.) }
\end{aligned}
$$

Taking moments about B:

Edexcel A level Maths Moments 2 section test solutions

$$
\begin{aligned}
& 2.4 Y-25 \mathrm{~g} \times 1.2+10 \mathrm{~g} \times 0.6=0 \\
& 2.4 Y=36 \mathrm{~g} \\
& Y=15 \mathrm{~g}=147
\end{aligned}
$$

Resolving horizontally:

$$
\begin{aligned}
& X-T \cos \theta=0 \\
& x=369.87 \cos 32^{\circ}=313.67
\end{aligned}
$$

Magnitude of reaction $=\sqrt{147^{2}+313.67^{2}}=346 \mathrm{~N}(3$ s.f.)

$\tan \alpha=\frac{147}{313.67}$
$\alpha=25^{\circ}$ (to nearest degree)
The reaction of A is at 25° above the horizontal.

