Section 2: Numerical integration

Exercise level 3 (Extension)

1. [You need to use radians in the trig equation throughout this question. Make sure your calculator is set to 'radian mode'.]
A scientist is estimating the mass of water in a wave at sea. The wave has a height from trough to peak of 5 metres, and the wave extends approximately at rightangles for 175 metres. The scientist models the cross-section of the wave by the graph
$y=a+b \cos x$ for $-\pi \leq x \leq+\pi$
with the trough of the wave given by $y=0$.
(i) Suggest values for a and b.
(ii) Sketch the graph of the cross-section.
(iii) Use the trapezium rule with 6 strips to find the area of the cross-section between $x=0$ and π.
(iv) If one cubic metre of sea water has a mass of approximately 1 tonne, estimate the total mass of water in the wave.
2. (i) Find $I=\int_{0}^{1} \sqrt[4]{x} \mathrm{~d} x$, giving your answer to 4 decimal places.
(ii) Use the trapezium rule with 4 strips to estimate I to 4 decimal places.
(iii) Find the percentage error in the estimate.
(iv) With the help of a sketch, explain why the trapezium rule gives a poor estimate in this example.
