Edexcel A level Maths Numerical methods

Section 2: Numerical integration

Exercise level 1

1. Use the trapezium rule to obtain approximate answers to 3 d.p. for the following integrals.
(i) $\int_{0}^{2} \frac{1}{1+x^{2}} \mathrm{~d} x \quad$ with 4 strips
(ii) $\int_{0}^{3} \sqrt{\left(1+x^{2}\right.} \mathrm{d} x$ with 3 strips
2. (i) The diagrams below show how four rectangles can be used to find an underestimate and an overestimate for the value of $\int_{0}^{2} \sqrt{1+x^{3}} \mathrm{~d} x$

Find the underestimate and the overestimate from these rectangles.
(ii) Find underestimates and overestimates for the value of $\int_{0}^{2} \sqrt{1+x^{3}} \mathrm{~d} x$ using 8 rectangles.
3. Values for a continuous function obtained experimentally are shown in the table below.

x	1	1.5	2	2.5	3
$\mathrm{f}(x)$	8.01	6.02	4.69	3.80	3.27

Use these values and the trapezium rule to estimate the value of $\int_{1}^{3} \mathrm{f}(x) \mathrm{d} x$.
4. Find an approximation to $I=\int_{2}^{3} \sqrt{x^{\frac{3}{2}}+1} \mathrm{~d} x$ by using the trapezium rule with 4 strips.

