Section 2: Integration by substitution

Exercise level 2

1. Find the area enclosed by the curve $y=\sqrt{1+2 x}$, the x-axis and the line $x=4$.
2. Find by integrating by inspection $\int \frac{x}{\sqrt{1+x^{2}}} \mathrm{~d} x$. Verify your result using the substitution $u=\sqrt{1+x^{2}}$.
3. Find (i) $\int \frac{1}{2 x+1} \mathrm{~d} x$
(ii) $\int \frac{3 x}{1+x^{2}} \mathrm{~d} x$
4. Find
(i) $\int \cot ^{2} 2 x \mathrm{~d} x$
(ii) $\int \frac{\tan x}{\sin 2 x} \mathrm{~d} x$
(iii) $\int \sin ^{2} 3 x \mathrm{~d} x$
(iv) $\int(\sin 2 x+\cos 2 x)^{2} \mathrm{~d} x$
5. Find
(i) $\int_{0}^{\frac{\pi}{4}} \sin ^{3} 2 x \mathrm{~d} x$
(ii) $\int_{0}^{\frac{\pi}{12}} \cos ^{4} x \mathrm{~d} x$
(iii) $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \tan \frac{1}{2} x \mathrm{~d} x$
(iv) $\int_{0}^{\pi / 2}(1+\cos x)^{3} \mathrm{~d} x$
6. Evaluate $\int_{0}^{1} \frac{x^{2}}{x^{3}+2} \mathrm{~d} x$, expressing your answer as a single logarithm.
7. (i) Find $\int \frac{1-2 x}{1+x-x^{2}} \mathrm{~d} x$
(ii) Find $\int e^{x}\left(1+e^{x}\right) d x$.
8. Differentiate $x \ln x$. Use this result to find the integral of $\ln x$.
9. Use integration by inspection to find
(i) $\int \frac{\cos x}{1+2 \sin x} d x$
(ii) $\int_{0}^{1} \frac{1+\mathrm{e}^{x}}{x+\mathrm{e}^{x}} \mathrm{~d} x$
10. Find $\int \cos ^{2} x \sin x \mathrm{~d} x$.
11. Find the area bounded by the curve $y=2^{x}$, the x-axis, the y-axis and the line $x=1$. Give your answer in terms of $\ln 2$.
