

Section 2: Integration by substitution

Exercise level 2

- 1. Find the area enclosed by the curve $y = \sqrt{1+2x}$, the *x*-axis and the line x = 4.
- 2. Find by integrating by inspection $\int \frac{x}{\sqrt{1+x^2}} dx$. Verify your result using the substitution $u = \sqrt{1+x^2}$.
- 3. Find (i) $\int \frac{1}{2x+1} dx$ (ii) $\int \frac{3x}{1+x^2} dx$
- 4. Find
 - (i) $\int \cot^2 2x \, dx$ (ii) $\int \frac{\tan x}{\sin 2x} \, dx$ (iii) $\int \sin^2 3x \, dx$ (iv) $\int (\sin 2x + \cos 2x)^2 \, dx$
- 5. Find
 - (i) $\int_{0}^{\frac{\pi}{4}} \sin^{3} 2x \, dx$ (ii) $\int_{0}^{\frac{\pi}{12}} \cos^{4} x \, dx$ (iii) $\int_{-\frac{\pi}{3}}^{\frac{\pi}{3}} \tan \frac{1}{2} x \, dx$ (iv) $\int_{0}^{\pi/2} (1 + \cos x)^{3} dx$
- 6. Evaluate $\int_{0}^{1} \frac{x^2}{x^3 + 2} dx$, expressing your answer as a single logarithm.
- 7. (i) Find $\int \frac{1-2x}{1+x-x^2} dx$ (ii) Find $\int e^x (1+e^x) dx$.
- 8. Differentiate $x \ln x$. Use this result to find the integral of $\ln x$.
- 9. Use integration by inspection to find

(i)
$$\int \frac{\cos x}{1+2\sin x} dx$$

(ii)
$$\int_0^1 \frac{1+e^x}{x+e^x} dx$$

- 10. Find $\int \cos^2 x \sin x \, dx$.
- 11. Find the area bounded by the curve $y = 2^x$, the *x*-axis, the *y*-axis and the line x = 1. Give your answer in terms of ln 2.

