Edexcel A level Maths Numerical methods

Section 1: Solving equations numerically

Exercise level 2

1. (i) By considering turning points, show that the equation $x^{4}+4 x^{3}+5 x^{2}-9=0$ has only one positive root.
(ii) Show that the equation can be rearranged to the form $x=\sqrt{\frac{9}{x^{2}+4 x+5}}$.
(iii) Using the equation from (ii) as the iterative formula, find this positive root to 2 d.p.
2. (i) Show that $x^{3}-x-4=0$ has one real root only and find two integers between which the root lies.
(ii) Using an initial value of $x_{0}=2$, find the values of x_{1} and x_{2} using each of the following iterative formulae, and draw a diagram to show how each procedure diverges or converges.
(a) $x_{n+1}=x_{n}^{3}-4$
(b) $\quad x_{n+1}=\frac{x_{n}+4}{x_{n}^{2}}$
(c) $x_{n+1}=\left(x_{n}+4\right)^{1 / 3}$
3. For the roots of the equations in (i) to (v)
(a) find the two consecutive integers between which the root lies,
(b) use the Newton-Raphson method to find the root correct to three decimal places.
(i) $x^{3}-2 x-2=0$
(ii) $x^{3}-x+3=0$
(iii) $2 x^{5}-x^{2}+1=0$
(iv) $x^{5}-x-1=0$
(v) $3 x^{3}+2 x^{2}-3=0$
