Section 1: Solving equations numerically

Exercise level 1

1. Show that a root α of the equation $\mathrm{e}^{x}-3 x+0.2=0$ lies between 1.34 and 1.35 .
2. Show that a root of the equation $x^{3}-7 x-12=0$ is 3.267 correct to 3 decimal places.
3. The equation $x^{3}-x-1=0$ has one real root near $x=1$.
(i) Show that the equation can be rearranged into the form $x=(1+x)^{1 / 3}$.
(ii) Using the iterative formula $x_{n+1}=\left(1+x_{n}\right)^{1 / 3}$ and initial approximation $x_{0}=1$, find the values of $x_{2}, x_{3}, x_{4}, x_{5}$ and x_{6}.
(iii)Use your results from (ii) to state the value this root to 3 d.p., and use a change of sign method to verify that your root is indeed correct to 3 d.p.
4. (i) By drawing the curve $y=\sin x$ and the line $2 y=2 x-1$ show that the equation $2 \sin x-2 x+1=0$ has one real root only.
(ii) Find the root to 3 d.p. using the iterative formula $x_{n+1}=\sin x_{n}+0.5$.
(iii)Use a change of sign method to verify that your root is indeed correct to 3 d.p.
