

## **Section 1: Introduction to differential equations**

## **Exercise level 2**

- 1. Find the solution of the differential equation  $x\frac{dy}{dx} = \frac{1}{\cos y}$  which passes through the point  $(1, \frac{3}{4}\pi)$ .
- 2. Solve the differential equation  $\frac{dy}{dx} = -xy$ , given that y = 1 when x = 0. Make y the subject of your solution.
- 3. Find the general solution of the differential equation  $x + y \frac{dy}{dx} = 10$ .
- 4. During a fermentation process, the rate of decomposition of fermenting mass *m* kg at time time *t* hours after the start of the process is given by  $\frac{dm}{dt} = -\frac{m}{(1+t)^2}$ . Show that, if m = 10 when t = 0, after a very long time there will be about 3.7 kg of the fermenting mass left.
- 5. Find the general solution of the differential equation  $\frac{dy}{dx} = \frac{2y}{(x^2 1)}$ , giving y in terms of x.

