Section 1: The shape of curves

Exercise level 2

1. (i) Find the stationary points on the curve $y=x^{4}-2 x^{3}$ and distinguish between them, showing all of the relevant working clearly.
(ii) Find the non-stationary point of inflection.
(iii)Sketch the curve.
2. A graph has equation $y=3 x^{4}-16 x^{3}+30 x^{2}-24 x+12$.
(i) Find an expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$.
(ii) Factorise your expression for $\frac{\mathrm{d} y}{\mathrm{~d} x}$, and hence show that the graph of the equation has just two points where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
(iii) By considering the value of the gradient on both sides of the points you found in (ii) above, show that just one of them is a turning point, and determine whether it is a maximum or minimum. What happens at the other point you found?
(iv) Make a rough sketch of the curve.
3. The equation of a curve is $y=(x+1)(x-3)^{3}$.
(i) Write the equation of the curve in the form $y=a x^{4}+b x^{3}+c x^{2}+d x+e$.
(ii) Find the coordinates of the points where $\frac{\mathrm{d} y}{\mathrm{~d} x}=0$.
(iii) Classify the stationary points.
(iv) Sketch the curve.
4. (i) Find the stationary points on the curve $y=\frac{1}{x}-x^{2}+3 x$ and identify their nature.
(ii) Explain how you know that there are no non-stationary points of inflection on the curve.
5. The curve $y=x^{3}+p x^{2}+q x+r$ has a stationary point of inflection at $(-1,3)$, Find the coordinates of p, q and r.
