Edexcel A level Mathematics Differentiation

Section 3: The product and quotient rules

Exercise level 3 (Extension)

1. (i) Given that $\mathrm{f}(x)=(x-a)^{2} \mathrm{~g}(x)$, show that $\mathrm{f}^{\prime}(a)=0$.
(ii) Given further that $\mathrm{g}(a)>0$, determine the nature of the stationary point at $x=a$.
2. (i) Use the quotient rule to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$ for the curve $y=\frac{x+1}{x-1}$.
(ii) By first writing $\frac{x+1}{x-1}=\frac{x-1+2}{x-1}=1+\frac{2}{x-1}$, obtain the result in (i) using the chain rule.
3. (i) Given $y=\frac{1}{\mathrm{~g}(x)}$, use the chain rule to show that $\frac{\mathrm{d} y}{\mathrm{~d} x}=-\frac{\mathrm{g}^{\prime}(x)}{[\mathrm{g}(x)]^{2}}$.
(ii) Now suppose $y=\frac{\mathrm{f}(x)}{\mathrm{g}(x)}$. By writing y as $\mathrm{f}(x) \times \frac{1}{\mathrm{~g}(x)}$, use the product rule to find $\frac{\mathrm{d} y}{\mathrm{~d} x}$. By expressing this as a single fraction, derive the quotient rule formula for differentiation.
